1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion = 6.0 |
---|
3 | |
---|
4 | //////////////////////////////////////////////////// |
---|
5 | // |
---|
6 | // model function that calculates the scattering from |
---|
7 | // lamellar surfactant structures. contrast is two-phase, |
---|
8 | // from the solvent and uniform bilayer. Integer numbers of |
---|
9 | // repeating bilayers (at a repeat spacing) leads to the |
---|
10 | // familiar lamellar peaks. Bending constant information |
---|
11 | // can be extracted from the Caille parameter with moderate |
---|
12 | // success. A number of the parameters should be held |
---|
13 | // fixed during the fitting procedure, as they should be well |
---|
14 | // known: |
---|
15 | // repeat spacing D = 2*pi/Qo |
---|
16 | // contrast = calculated value |
---|
17 | // polydispersity should be close to 0.1-0.3 |
---|
18 | // Caille parameter <0.8 or 1.0 |
---|
19 | // |
---|
20 | // NOTES for Curve Fitting: |
---|
21 | // the epsilon wave "epsilon_Lamellar" should be used to force a |
---|
22 | // larger derivative step for the # of repeat units, which is an integer. |
---|
23 | // a singular matix error will always result if you don't follow this. |
---|
24 | // Also, the # of repeats should be constrained to ~3<N<200, otherwise |
---|
25 | // the optimization can pick a VERY large N, and waste lots of time |
---|
26 | // in the summation loop |
---|
27 | // |
---|
28 | // instrumental resolution is taken into account in the REGULAR |
---|
29 | // model calculation. resolution of ONLY the S(Q) peaks are |
---|
30 | // included. performing the typical smearing calculation would |
---|
31 | // be "double smearing", so is not done. |
---|
32 | // |
---|
33 | // the delta Q parameter "gDelQ" or "dQ" is taken from the q-dependent |
---|
34 | // instrument resolution "abssq" column as this is the identical definition |
---|
35 | // as in the original reference. If the real resolution function cannot be |
---|
36 | // found, a default value, typical of a "medium" q-range on the NG3 SANS is |
---|
37 | // used, although the real values are highly preferred |
---|
38 | // |
---|
39 | // REFERENCE: Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. |
---|
40 | // also in J. Phys. Chem. B, 105, (2001) 11081-11088. |
---|
41 | // |
---|
42 | // 14 JULY 2003 SRK |
---|
43 | // |
---|
44 | //////////////////////////////////////////////////// |
---|
45 | |
---|
46 | //this macro sets up all the necessary parameters and waves that are |
---|
47 | //needed to calculate the model function. |
---|
48 | // |
---|
49 | Proc Plot_LamellarPS(num,qmin,qmax) |
---|
50 | Variable num=128, qmin=.001, qmax=.5 |
---|
51 | Prompt num "Enter number of data points for model: " |
---|
52 | Prompt qmin "Enter minimum q-value (^1) for model: " |
---|
53 | Prompt qmax "Enter maximum q-value (^1) for model: " |
---|
54 | // |
---|
55 | // constants |
---|
56 | Variable/G root:gEuler = 0.5772156649 // Euler's constant |
---|
57 | Variable/G root:gDelQ = 0.0025 //[=] 1/A, q-resolution, default value |
---|
58 | |
---|
59 | Make/O/D/n=(num) xwave_LamellarPS, ywave_LamellarPS |
---|
60 | xwave_LamellarPS = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
61 | Make/O/D coef_LamellarPS = {1,400,30,0.15,6e-6,20,0.1,0} //CH#2 |
---|
62 | make/o/t parameters_LamellarPS = {"Scale","Lamellar spacing, D (A)","Bilayer Thick (delta) (A)","polydisp of Bilayer Thickness","contrast (A^-2)","# of Lamellar plates","Caille parameter","Incoherent Bgd (cm-1)"} //CH#3 |
---|
63 | Edit parameters_LamellarPS, coef_LamellarPS |
---|
64 | ModifyTable width(parameters_LamellarPS)=160 |
---|
65 | ywave_LamellarPS := LamellarPS(coef_LamellarPS, xwave_LamellarPS) |
---|
66 | Display ywave_LamellarPS vs xwave_LamellarPS |
---|
67 | ModifyGraph marker=29, msize=2, mode=4 |
---|
68 | ModifyGraph log=1 |
---|
69 | Label bottom "q (\\S-1\\M) " |
---|
70 | Label left "I(q) (cm\\S-1\\M)" |
---|
71 | // |
---|
72 | // make epsilon wave appropriate for integer number of lamellar repeats |
---|
73 | Duplicate/O coef_LamellarPS epsilon_LamellarPS |
---|
74 | epsilon_LamellarPS = 1e-4 |
---|
75 | epsilon_LamellarPS[5] = 1 //to make the derivative useful |
---|
76 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
77 | End |
---|
78 | |
---|
79 | //// |
---|
80 | ////this macro sets up all the necessary parameters and waves that are |
---|
81 | ////needed to calculate the smeared model function. |
---|
82 | //// |
---|
83 | ////no input parameters are necessary, it MUST use the experimental q-values |
---|
84 | //// from the experimental data read in from an AVE/QSIG data file |
---|
85 | ////////////////////////////////////////////////////// |
---|
86 | //Macro PlotSmeared_LamellarPS() //Lamellar |
---|
87 | // |
---|
88 | // |
---|
89 | // // if no gQvals wave, data must not have been loaded => abort |
---|
90 | // If(ResolutionWavesMissing()) //part of GaussUtils |
---|
91 | // Abort |
---|
92 | // endif |
---|
93 | // |
---|
94 | // // constants |
---|
95 | // Variable/G root:gEuler = 0.5772156649 // Euler's constant |
---|
96 | // Variable/G root:gDelQ = 0.0025 //[=] 1/A, q-resolution, default value |
---|
97 | // // Setup parameter table for model function |
---|
98 | // Make/O/D smear_coef_LamellarPS = {1,400,30,0.15,6e-6,20,0.1,0} //CH#4 |
---|
99 | // make/o/t smear_parameters_LamellarPS = {"Scale","Lamellar spacing, D (A)","Bilayer Thick (delta) (A)","polydisp of Bilayer Thickness","contrast (A^-2)","# of Lamellar plates","Caille parameter","Incoherent Bgd (cm-1)"} |
---|
100 | // Edit smear_parameters_LamellarPS,smear_coef_LamellarPS //display parameters in a table |
---|
101 | // |
---|
102 | // // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
103 | // // make extra copy of experimental q-values for easy plotting |
---|
104 | // Duplicate/O $gQvals smeared_LamellarPS,smeared_qvals // |
---|
105 | // SetScale d,0,0,"1/cm",smeared_LamellarPS // |
---|
106 | // |
---|
107 | // smeared_LamellarPS := LamellarPS_Smeared(smear_coef_LamellarPS,$gQvals) // SMEARED function name |
---|
108 | // Display smeared_LamellarPS vs $gQvals // |
---|
109 | // ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
110 | // Label bottom "q (\\S-1\\M)" |
---|
111 | // Label left "I(q) (cm\\S-1\\M)" |
---|
112 | // |
---|
113 | //End // end macro |
---|
114 | |
---|
115 | // instrument resolution IS included here in S(Q) |
---|
116 | Function LamellarPS(w,x) : FitFunc |
---|
117 | Wave w |
---|
118 | Variable x |
---|
119 | // Input (fitting) variables are: |
---|
120 | //[0]Scale |
---|
121 | //[1]Lam spacing, D |
---|
122 | //[2]Bilay Thick (delta) |
---|
123 | //[3]polydisp of the bilayer thickness |
---|
124 | //[4]contrast |
---|
125 | //[5]# of Lam plates |
---|
126 | //[6]Caille parameter |
---|
127 | //[7]Incoherent Bgd (cm-1) |
---|
128 | |
---|
129 | // give them nice names |
---|
130 | Variable scale,dd,del,sig,contr,NN,Cp,bkg |
---|
131 | scale = w[0] |
---|
132 | dd = w[1] |
---|
133 | del = w[2] |
---|
134 | sig = w[3]*del |
---|
135 | contr = w[4] |
---|
136 | NN = trunc(w[5]) //be sure that NN is an integer |
---|
137 | Cp = w[6] |
---|
138 | bkg = w[7] |
---|
139 | |
---|
140 | // local variables |
---|
141 | Variable inten, qval,Pq,Sq,ii,alpha,temp,t1,t2,t3,dQ |
---|
142 | |
---|
143 | NVAR Euler = root:gEuler |
---|
144 | NVAR dQDefault = root:gDelQ |
---|
145 | // x is the q-value for the calculation |
---|
146 | qval = x |
---|
147 | //get the instrument resolution |
---|
148 | SVAR/Z sigQ = gSig_Q |
---|
149 | SVAR/Z qStr = gQVals |
---|
150 | |
---|
151 | if(SVAR_Exists(sigQ) && SVAR_Exists(qStr)) |
---|
152 | Wave/Z sigWave=$sigQ |
---|
153 | Wave/Z sig_Qwave = $qStr |
---|
154 | if(waveexists(sigWave)&&waveexists(sig_qwave)) |
---|
155 | dQ = interp(qval, sig_Qwave, sigWave ) |
---|
156 | else |
---|
157 | // if(qval>0.01 && qval<0.012) |
---|
158 | // print "using default resolution" |
---|
159 | // endif |
---|
160 | dQ = dQDefault |
---|
161 | endif |
---|
162 | else |
---|
163 | dQ = dQDefault |
---|
164 | endif |
---|
165 | |
---|
166 | Pq = 2*contr^2/qval/qval*(1-cos(qval*del)*exp(-0.5*qval^2*sig^2)) |
---|
167 | |
---|
168 | ii=0 |
---|
169 | Sq = 0 |
---|
170 | for(ii=1;ii<(NN-1);ii+=1) |
---|
171 | temp = 0 |
---|
172 | alpha = Cp/4/pi/pi*(ln(pi*ii) + Euler) |
---|
173 | t1 = 2*dQ*dQ*dd*dd*alpha |
---|
174 | t2 = 2*qval*qval*dd*dd*alpha |
---|
175 | t3 = dQ*dQ*dd*dd*ii*ii |
---|
176 | |
---|
177 | temp = 1-ii/NN |
---|
178 | temp *= cos(dd*qval*ii/(1+t1)) |
---|
179 | temp *= exp(-1*(t2 + t3)/(2*(1+t1)) ) |
---|
180 | temp /= sqrt(1+t1) |
---|
181 | |
---|
182 | Sq += temp |
---|
183 | endfor |
---|
184 | Sq *= 2 |
---|
185 | Sq += 1 |
---|
186 | |
---|
187 | inten = 2*Pi*scale*Pq*Sq/(dd*Qval^2) |
---|
188 | |
---|
189 | inten *= 1e8 // 1/A to 1/cm |
---|
190 | //inten = Sq |
---|
191 | Return (inten+bkg) |
---|
192 | End |
---|
193 | |
---|
194 | //the smeared model calculation |
---|
195 | //Function LamellarPS_Smeared(w,x) :FitFunc |
---|
196 | // Wave w |
---|
197 | // Variable x |
---|
198 | // |
---|
199 | // Variable ans |
---|
200 | // SVAR sq = gSig_Q |
---|
201 | // SVAR qb = gQ_bar |
---|
202 | // SVAR sh = gShadow |
---|
203 | // SVAR gQ = gQVals |
---|
204 | // |
---|
205 | // ans = Smear_Model_20(LamellarPS,$sq,$qb,$sh,$gQ,w,x) |
---|
206 | // |
---|
207 | // return(ans) |
---|
208 | //End |
---|
209 | // |
---|