1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma version=3.00 |
---|
3 | #pragma IgorVersion=6.0 |
---|
4 | |
---|
5 | //Functions for doing USANS Slit smearing by method of weight matrix |
---|
6 | //Routines originally from J Barker fortran code |
---|
7 | //Translated to IGOR by M-H Kim |
---|
8 | //Updated to use IGOR features and integrated into SANS Macros by A J Jackson |
---|
9 | // |
---|
10 | //Calculation of weights takes a while, but then each recalculation of the smeared model takes no longer |
---|
11 | //than the unsmeared calculation. |
---|
12 | // |
---|
13 | //Should be used when just USANS data is being fitted. Fitting of combined SANS/USANS must |
---|
14 | //still be done by integral method as per S Kline macros. |
---|
15 | //This can be avoided if IGOR Global fit is used - different functions can be fitted to the two data sets |
---|
16 | //with variables tied across the two. There is a loss of simplicity for the user however. |
---|
17 | // |
---|
18 | |
---|
19 | // AJJ |
---|
20 | // July 26 2007 - Modified functions to work with new SANS Analysis Macros |
---|
21 | // - pass basestr to functions to determine wave names and avoid globals |
---|
22 | // - pass dQv to functions to avoid globals |
---|
23 | // - pass N to CalcR to avoid globals |
---|
24 | |
---|
25 | Function USANS_CalcWeights(basestr, dQv) |
---|
26 | String basestr |
---|
27 | Variable dQv |
---|
28 | |
---|
29 | Variable/G USANS_N=numpnts($(basestr+"_q")) |
---|
30 | Variable/G USANS_dQv = dQv |
---|
31 | String/G USANS_basestr = basestr |
---|
32 | |
---|
33 | Make/O/N=(USANS_N,USANS_N) $(basestr+"_res") |
---|
34 | //Make/O/N=(N,N) W1mat |
---|
35 | //Make/O/N=(N,N) W2mat |
---|
36 | //Make/O/N=(N,N) Rmat |
---|
37 | Wave weights = $(basestr+"_res") |
---|
38 | |
---|
39 | Variable/G USANS_m = EnterSlope() |
---|
40 | |
---|
41 | Variable tref = startMSTimer |
---|
42 | print "Calculating W1..." |
---|
43 | weights = (p <= q ) && (q < USANS_N-1) ? CalcW1(p,q) : 0 |
---|
44 | print "Calculating W2..." |
---|
45 | weights += (p+1 <= q ) && (q < USANS_N) ? CalcW2(p,q) : 0 |
---|
46 | print "Calculating Remainders..." |
---|
47 | weights += (q == USANS_N-1) ? CalcR(p) : 0 |
---|
48 | // print "Summing weights..." |
---|
49 | // Weights = W1mat + W2mat + Rmat |
---|
50 | print "Done" |
---|
51 | Variable ms = stopMSTimer(tref) |
---|
52 | print "Time elapsed = ", ms/1e6, "s" |
---|
53 | //return Weights |
---|
54 | End |
---|
55 | |
---|
56 | // This is far from satisfactory! |
---|
57 | Function EnterSlope() |
---|
58 | |
---|
59 | Variable slope=-4 |
---|
60 | |
---|
61 | Prompt slope "Enter a slope" |
---|
62 | DoPrompt "Enter Slope", slope |
---|
63 | If (V_Flag) |
---|
64 | return -1 |
---|
65 | Endif |
---|
66 | print "slope=", slope |
---|
67 | return slope |
---|
68 | |
---|
69 | End |
---|
70 | |
---|
71 | Function CalcW1(i,j) |
---|
72 | |
---|
73 | Variable i,j |
---|
74 | SVAR USANS_basestr |
---|
75 | NVAR dQv = USANS_dQv |
---|
76 | |
---|
77 | Variable UU,UL,dqj,rU,rL,wU,wL,dqw |
---|
78 | Wave Qval = $(USANS_basestr+"_q") |
---|
79 | |
---|
80 | UU =sqrt(Qval[j+1]^2-Qval[i]^2) |
---|
81 | UL = sqrt(Qval[j]^2-Qval[i]^2) |
---|
82 | dqw = Qval[j+1]-Qval[j] |
---|
83 | rU = sqrt(UU^2+Qval[i]^2) |
---|
84 | rL = sqrt(UL^2+Qval[i]^2) |
---|
85 | |
---|
86 | wU = (1.0/dQv)*(Qval[j+1]*UU/dqw - 0.5*UU*rU/dqw - 0.5*Qval[i]^2*ln(UU+rU)/dqw ) |
---|
87 | wL = (1.0/dQv)*(Qval[j+1]*UL/dqw - 0.5*UL*rL/dqw - 0.5*Qval[i]^2*ln(UL+rL)/dqw ) |
---|
88 | |
---|
89 | Return wU-wL |
---|
90 | |
---|
91 | End |
---|
92 | |
---|
93 | Function CalcW2(i,j) |
---|
94 | |
---|
95 | Variable i,j |
---|
96 | |
---|
97 | SVAR USANS_basestr |
---|
98 | NVAR dQv = USANS_dQv |
---|
99 | |
---|
100 | variable UU,UL,dqw,rU,rL,wU,wL |
---|
101 | |
---|
102 | Wave Qval = $(USANS_basestr+"_q") |
---|
103 | |
---|
104 | UU = sqrt(Qval[j]^2-Qval[i]^2) |
---|
105 | UL = sqrt(Qval[j-1]^2-Qval[i]^2) |
---|
106 | dqw = Qval[j]-Qval[j-1] |
---|
107 | rU = sqrt(UU^2+Qval[i]^2) |
---|
108 | rL = sqrt(UL^2+Qval[i]^2) |
---|
109 | wU = (1.0/dQv)*( -Qval[j-1]*UU/dqw + 0.5*UU*rU/dqw + 0.5*Qval[i]^2*ln(UU+rU)/dqw ) |
---|
110 | wL = (1.0/dQv)*( -Qval[j-1]*UL/dqw + 0.5*UL*rL/dqw + 0.5*Qval[i]^2*ln(UL+rL)/dqw ) |
---|
111 | |
---|
112 | Return wU-wL |
---|
113 | |
---|
114 | End |
---|
115 | |
---|
116 | Function CalcR(i) |
---|
117 | |
---|
118 | Variable i |
---|
119 | |
---|
120 | SVAR USANS_basestr |
---|
121 | NVAR N = USANS_N |
---|
122 | NVAR dQv = USANS_dQv |
---|
123 | |
---|
124 | Variable retval |
---|
125 | Wave Qval = $(USANS_basestr+"_q") |
---|
126 | Variable/G USANS_intQpt = Qval[i] |
---|
127 | |
---|
128 | Variable lower = sqrt(qval[N-1]^2-qval[i]^2) |
---|
129 | Variable upper = lower +dQv |
---|
130 | |
---|
131 | retval = Integrate1D(Remainder,lower,upper) |
---|
132 | |
---|
133 | Return retval |
---|
134 | |
---|
135 | End |
---|
136 | |
---|
137 | Function Remainder(i) |
---|
138 | |
---|
139 | Variable i |
---|
140 | |
---|
141 | SVAR USANS_basestr |
---|
142 | NVAR m = USANS_m |
---|
143 | NVAR qi = USANS_intQpt |
---|
144 | NVAR N = USANS_N |
---|
145 | WAVE Qval = $(USANS_basestr+"_q") |
---|
146 | Variable retVal |
---|
147 | |
---|
148 | retVal=Qval[N-1]^(-m)*(i^2+qi^2)^(m/2) |
---|
149 | |
---|
150 | return retval |
---|
151 | |
---|
152 | End |
---|