1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion=6.0 |
---|
3 | |
---|
4 | // |
---|
5 | // The plotting macro sets up TWO dependencies |
---|
6 | // - one for the triplet calculation |
---|
7 | // - one for a matrix to display, a copy of the triplet |
---|
8 | // |
---|
9 | // For display, there are two copies of the matrix. One matrix is linear, and is a copy of the |
---|
10 | // triplet (which is ALWAYS linear). The other matrix is toggled log/lin for display |
---|
11 | // in the same way the 2D SANS data matrix is handled. |
---|
12 | // |
---|
13 | |
---|
14 | /// REQUIRES DANSE XOP for 2D FUNCTIONS |
---|
15 | |
---|
16 | // |
---|
17 | // the calculation is done as for the QxQy data set: |
---|
18 | // three waves XYZ, then converted to a matrix |
---|
19 | // |
---|
20 | Proc PlotEllipticalCylinder2D(str) |
---|
21 | String str |
---|
22 | Prompt str,"Pick the data folder containing the 2D data",popup,getAList(4) |
---|
23 | |
---|
24 | if (!exists("EllipticalCylinder_2DX")) |
---|
25 | Abort "You must have the SANSAnalysis XOP installed to use 2D models" |
---|
26 | endif |
---|
27 | |
---|
28 | SetDataFolder $("root:"+str) |
---|
29 | |
---|
30 | // Setup parameter table for model function |
---|
31 | //make/O/T/N=14 parameters_EllCyl2D |
---|
32 | //Make/O/D/N=14 coef_EllCyl2D |
---|
33 | make/O/T/N=14 parameters_EllCyl2D |
---|
34 | Make/O/D/N=14 coef_EllCyl2D |
---|
35 | |
---|
36 | coef_EllCyl2D[0] = 1.0 |
---|
37 | coef_EllCyl2D[1] = 20.0 |
---|
38 | coef_EllCyl2D[2] = 1.5 |
---|
39 | coef_EllCyl2D[3] = 400.0 |
---|
40 | coef_EllCyl2D[4] = 3e-6 |
---|
41 | coef_EllCyl2D[5] = 6.3e-6 |
---|
42 | coef_EllCyl2D[6] = 0.0 |
---|
43 | coef_EllCyl2D[7] = 1.57 |
---|
44 | coef_EllCyl2D[8] = 0.0 |
---|
45 | coef_EllCyl2D[9] = 0.0 |
---|
46 | coef_EllCyl2D[10] = 0.0 |
---|
47 | coef_EllCyl2D[11] = 0.0 |
---|
48 | coef_EllCyl2D[12] = 0.0 |
---|
49 | coef_EllCyl2D[13] = 0.0 |
---|
50 | |
---|
51 | // now hard-wire the # of integration points |
---|
52 | //coef_EllCyl2D[14] = 25 |
---|
53 | |
---|
54 | parameters_EllCyl2D[0] = "Scale" |
---|
55 | parameters_EllCyl2D[1] = "R_minor" |
---|
56 | parameters_EllCyl2D[2] = "R_ratio (major/minor)" |
---|
57 | parameters_EllCyl2D[3] = "Length" |
---|
58 | parameters_EllCyl2D[4] = "SLD cylinder (A^-2)" |
---|
59 | parameters_EllCyl2D[5] = "SLD solvent" |
---|
60 | parameters_EllCyl2D[6] = "Background" |
---|
61 | parameters_EllCyl2D[7] = "Axis Theta" |
---|
62 | parameters_EllCyl2D[8] = "Axis Phi" |
---|
63 | parameters_EllCyl2D[9] = "Ellipse Psi" |
---|
64 | parameters_EllCyl2D[10] = "Sigma of polydisp in R_minor [Angstrom]" |
---|
65 | parameters_EllCyl2D[11] = "Sigma of polydisp in R_ratio" |
---|
66 | parameters_EllCyl2D[12] = "Sigma of polydisp in Theta [rad]" |
---|
67 | parameters_EllCyl2D[13] = "Sigma of polydisp in Phi [rad]" |
---|
68 | //parameters_EllCyl2D[14] = "Num of polydisp points" |
---|
69 | |
---|
70 | Edit parameters_EllCyl2D,coef_EllCyl2D |
---|
71 | |
---|
72 | // generate the triplet representation |
---|
73 | Duplicate/O $(str+"_qx") xwave_EllCyl2D |
---|
74 | Duplicate/O $(str+"_qy") ywave_EllCyl2D,zwave_EllCyl2D |
---|
75 | |
---|
76 | Variable/G gs_EllCyl2D=0 |
---|
77 | gs_EllCyl2D := EllipticalCylinder2D(coef_EllCyl2D,zwave_EllCyl2D,xwave_EllCyl2D,ywave_EllCyl2D) //AAO 2D calculation |
---|
78 | |
---|
79 | Display ywave_EllCyl2D vs xwave_EllCyl2D |
---|
80 | modifygraph log=0 |
---|
81 | ModifyGraph mode=3,marker=16,zColor(ywave_EllCyl2D)={zwave_EllCyl2D,*,*,YellowHot,0} |
---|
82 | ModifyGraph standoff=0 |
---|
83 | ModifyGraph width={Aspect,1} |
---|
84 | ModifyGraph lowTrip=0.001 |
---|
85 | Label bottom "qx (A\\S-1\\M)" |
---|
86 | Label left "qy (A\\S-1\\M)" |
---|
87 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
88 | |
---|
89 | // generate the matrix representation |
---|
90 | ConvertQxQy2Mat(xwave_EllCyl2D,ywave_EllCyl2D,zwave_EllCyl2D,"EllCyl2D_mat") |
---|
91 | Duplicate/O $"EllCyl2D_mat",$"EllCyl2D_lin" //keep a linear-scaled version of the data |
---|
92 | // _mat is for display, _lin is the real calculation |
---|
93 | |
---|
94 | // not a function evaluation - this simply keeps the matrix for display in sync with the triplet calculation |
---|
95 | Variable/G gs_EllCyl2Dmat=0 |
---|
96 | gs_EllCyl2Dmat := UpdateQxQy2Mat(xwave_EllCyl2D,ywave_EllCyl2D,zwave_EllCyl2D,EllCyl2D_lin,EllCyl2D_mat) |
---|
97 | |
---|
98 | |
---|
99 | SetDataFolder root: |
---|
100 | AddModelToStrings("EllipticalCylinder2D","coef_EllCyl2D","EllCyl2D") |
---|
101 | End |
---|
102 | |
---|
103 | //AAO version, uses XOP if available |
---|
104 | // simply calls the original single point calculation with |
---|
105 | // a wave assignment (this will behave nicely if given point ranges) |
---|
106 | // |
---|
107 | // NON-THREADED IMPLEMENTATION |
---|
108 | // |
---|
109 | //Function EllipticalCylinder2D(cw,zw,xw,yw) : FitFunc |
---|
110 | // Wave cw,zw,xw,yw |
---|
111 | // |
---|
112 | //#if exists("EllipticalCylinderModel_D") |
---|
113 | // |
---|
114 | // Make/O/D/N=15 EllCyl2D_tmp |
---|
115 | // EllCyl2D_tmp = cw |
---|
116 | // EllCyl2D_tmp[14] = 25 |
---|
117 | // |
---|
118 | // zw = EllipticalCylinderModel_D(EllCyl2D_tmp,xw,yw) |
---|
119 | // |
---|
120 | //// zw = EllipticalCylinderModel_D(cw,xw,yw) |
---|
121 | //#else |
---|
122 | // Abort "You do not have the SANS Analysis XOP installed" |
---|
123 | //#endif |
---|
124 | // return(0) |
---|
125 | //End |
---|
126 | // |
---|
127 | |
---|
128 | //threaded version of the function |
---|
129 | ThreadSafe Function EllipticalCylinder2D_T(cw,zw,xw,yw,p1,p2) |
---|
130 | WAVE cw,zw,xw,yw |
---|
131 | Variable p1,p2 |
---|
132 | |
---|
133 | #if exists("EllipticalCylinder_2DX") //to hide the function if XOP not installed |
---|
134 | |
---|
135 | Make/O/D/N=15 EllCyl2D_tmp |
---|
136 | EllCyl2D_tmp = cw |
---|
137 | EllCyl2D_tmp[14] = 25 |
---|
138 | EllCyl2D_tmp[6] = 0 //pass in a zero background and add it in later |
---|
139 | |
---|
140 | zw[p1,p2]= EllipticalCylinder_2DX(EllCyl2D_tmp,xw,yw) + cw[6] |
---|
141 | |
---|
142 | #endif |
---|
143 | |
---|
144 | return 0 |
---|
145 | End |
---|
146 | |
---|
147 | // |
---|
148 | // Fit function that is actually a wrapper to dispatch the calculation to N threads |
---|
149 | // |
---|
150 | // nthreads is 1 or an even number, typically 2 |
---|
151 | // it doesn't matter if npt is odd. In this case, fractional point numbers are passed |
---|
152 | // and the wave indexing works just fine - I tested this with test waves of 7 and 8 points |
---|
153 | // and the points "2.5" and "3.5" evaluate correctly as 2 and 3 |
---|
154 | // |
---|
155 | Function EllipticalCylinder2D(cw,zw,xw,yw) : FitFunc |
---|
156 | Wave cw,zw,xw,yw |
---|
157 | |
---|
158 | Variable npt=numpnts(yw) |
---|
159 | Variable i,nthreads= ThreadProcessorCount |
---|
160 | variable mt= ThreadGroupCreate(nthreads) |
---|
161 | |
---|
162 | for(i=0;i<nthreads;i+=1) |
---|
163 | // Print (i*npt/nthreads),((i+1)*npt/nthreads-1) |
---|
164 | ThreadStart mt,i,EllipticalCylinder2D_T(cw,zw,xw,yw,(i*npt/nthreads),((i+1)*npt/nthreads-1)) |
---|
165 | endfor |
---|
166 | |
---|
167 | do |
---|
168 | variable tgs= ThreadGroupWait(mt,100) |
---|
169 | while( tgs != 0 ) |
---|
170 | |
---|
171 | variable dummy= ThreadGroupRelease(mt) |
---|
172 | |
---|
173 | return(0) |
---|
174 | End |
---|