1 | /* SimpleFit.c |
---|
2 | |
---|
3 | A simplified project designed to act as a template for your curve fitting function. |
---|
4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
5 | */ |
---|
6 | |
---|
7 | #pragma XOP_SET_STRUCT_PACKING // All structures are 2-byte-aligned. |
---|
8 | |
---|
9 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
10 | #include "SANSAnalysis.h" |
---|
11 | #include "Sphere.h" |
---|
12 | |
---|
13 | // scattering from a sphere - hardly needs to be an XOP... |
---|
14 | int |
---|
15 | SphereFormX(FitParamsPtr p) |
---|
16 | { |
---|
17 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
18 | float *fp; // Pointer to single precision wave data. |
---|
19 | DOUBLE q; |
---|
20 | DOUBLE scale,radius,delrho,bkg; //my local names |
---|
21 | DOUBLE bes,f,vol,f2,pi; |
---|
22 | |
---|
23 | if (p->waveHandle == NIL) { |
---|
24 | SetNaN64(&p->result); |
---|
25 | return NON_EXISTENT_WAVE; |
---|
26 | } |
---|
27 | |
---|
28 | pi = 4.0*atan(1.0); |
---|
29 | q= p->x; |
---|
30 | |
---|
31 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
32 | case NT_FP32: |
---|
33 | fp= WaveData(p->waveHandle); |
---|
34 | scale = fp[0]; |
---|
35 | radius = fp[1]; |
---|
36 | delrho = fp[2]; |
---|
37 | bkg = fp[3]; |
---|
38 | |
---|
39 | break; |
---|
40 | case NT_FP64: |
---|
41 | dp= WaveData(p->waveHandle); |
---|
42 | scale = dp[0]; |
---|
43 | radius = dp[1]; |
---|
44 | delrho = dp[2]; |
---|
45 | bkg = dp[3]; |
---|
46 | |
---|
47 | break; |
---|
48 | default: // We can't handle this wave data type. |
---|
49 | SetNaN64(&p->result); |
---|
50 | return REQUIRES_SP_OR_DP_WAVE; |
---|
51 | } |
---|
52 | //handle q==0 separately |
---|
53 | if(q==0){ |
---|
54 | f = 4.0/3.0*pi*radius*radius*radius*delrho*delrho*scale*1.0e8 + bkg; |
---|
55 | p->result= f; |
---|
56 | return(0); |
---|
57 | } |
---|
58 | |
---|
59 | bes = 3.0*(sin(q*radius)-q*radius*cos(q*radius))/(q*q*q)/(radius*radius*radius); |
---|
60 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
61 | f = vol*bes*delrho; // [=] |
---|
62 | // normalize to single particle volume, convert to 1/cm |
---|
63 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
64 | |
---|
65 | p->result= (scale*f2+bkg); //scale, and add in the background |
---|
66 | return 0; |
---|
67 | } |
---|
68 | |
---|
69 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
70 | int |
---|
71 | CoreShellFormX(FitParamsPtr p) |
---|
72 | { |
---|
73 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
74 | float *fp; // Pointer to single precision wave data. |
---|
75 | DOUBLE x,pi; |
---|
76 | DOUBLE scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
77 | DOUBLE bes,f,vol,qr,contr,f2; |
---|
78 | |
---|
79 | if (p->waveHandle == NIL) { |
---|
80 | SetNaN64(&p->result); |
---|
81 | return NON_EXISTENT_WAVE; |
---|
82 | } |
---|
83 | |
---|
84 | pi = 4.0*atan(1.0); |
---|
85 | x= p->x; |
---|
86 | |
---|
87 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
88 | case NT_FP32: |
---|
89 | fp= WaveData(p->waveHandle); |
---|
90 | scale = fp[0]; |
---|
91 | rcore = fp[1]; |
---|
92 | thick = fp[2]; |
---|
93 | rhocore = fp[3]; |
---|
94 | rhoshel = fp[4]; |
---|
95 | rhosolv = fp[5]; |
---|
96 | bkg = fp[6]; |
---|
97 | |
---|
98 | break; |
---|
99 | case NT_FP64: |
---|
100 | dp= WaveData(p->waveHandle); |
---|
101 | scale = dp[0]; |
---|
102 | rcore = dp[1]; |
---|
103 | thick = dp[2]; |
---|
104 | rhocore = dp[3]; |
---|
105 | rhoshel = dp[4]; |
---|
106 | rhosolv = dp[5]; |
---|
107 | bkg = dp[6]; |
---|
108 | |
---|
109 | break; |
---|
110 | default: // We can't handle this wave data type. |
---|
111 | SetNaN64(&p->result); |
---|
112 | return REQUIRES_SP_OR_DP_WAVE; |
---|
113 | } |
---|
114 | // core first, then add in shell |
---|
115 | qr=x*rcore; |
---|
116 | contr = rhocore-rhoshel; |
---|
117 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
118 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
119 | f = vol*bes*contr; |
---|
120 | //now the shell |
---|
121 | qr=x*(rcore+thick); |
---|
122 | contr = rhoshel-rhosolv; |
---|
123 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
124 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
125 | f += vol*bes*contr; |
---|
126 | |
---|
127 | // normalize to particle volume and rescale from [-1] to [cm-1] |
---|
128 | f2 = f*f/vol*1.0e8; |
---|
129 | |
---|
130 | //scale if desired |
---|
131 | f2 *= scale; |
---|
132 | // then add in the background |
---|
133 | f2 += bkg; |
---|
134 | |
---|
135 | p->result= f2; |
---|
136 | return 0; |
---|
137 | } |
---|
138 | |
---|
139 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
140 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
141 | int |
---|
142 | VesicleFormX(FitParamsPtr p) |
---|
143 | { |
---|
144 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
145 | float *fp; // Pointer to single precision wave data. |
---|
146 | DOUBLE x,pi; |
---|
147 | DOUBLE scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
148 | DOUBLE bes,f,vol,qr,contr,f2; |
---|
149 | |
---|
150 | if (p->waveHandle == NIL) { |
---|
151 | SetNaN64(&p->result); |
---|
152 | return NON_EXISTENT_WAVE; |
---|
153 | } |
---|
154 | |
---|
155 | pi = 4.0*atan(1.0); |
---|
156 | x= p->x; |
---|
157 | |
---|
158 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
159 | case NT_FP32: |
---|
160 | fp= WaveData(p->waveHandle); |
---|
161 | scale = fp[0]; |
---|
162 | rcore = fp[1]; |
---|
163 | thick = fp[2]; |
---|
164 | rhocore = fp[3]; |
---|
165 | rhosolv = rhocore; |
---|
166 | rhoshel = fp[4]; |
---|
167 | bkg = fp[5]; |
---|
168 | |
---|
169 | break; |
---|
170 | case NT_FP64: |
---|
171 | dp= WaveData(p->waveHandle); |
---|
172 | scale = dp[0]; |
---|
173 | rcore = dp[1]; |
---|
174 | thick = dp[2]; |
---|
175 | rhocore = dp[3]; |
---|
176 | rhosolv = rhocore; |
---|
177 | rhoshel = dp[4]; |
---|
178 | bkg = dp[5]; |
---|
179 | |
---|
180 | break; |
---|
181 | default: // We can't handle this wave data type. |
---|
182 | SetNaN64(&p->result); |
---|
183 | return REQUIRES_SP_OR_DP_WAVE; |
---|
184 | } |
---|
185 | // core first, then add in shell |
---|
186 | qr=x*rcore; |
---|
187 | contr = rhocore-rhoshel; |
---|
188 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
189 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
190 | f = vol*bes*contr; |
---|
191 | //now the shell |
---|
192 | qr=x*(rcore+thick); |
---|
193 | contr = rhoshel-rhosolv; |
---|
194 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
195 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
196 | f += vol*bes*contr; |
---|
197 | |
---|
198 | // normalize to the particle volume and rescale from [-1] to [cm-1] |
---|
199 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
200 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
201 | f2 = f*f/vol*1.0e8; |
---|
202 | |
---|
203 | //scale if desired |
---|
204 | f2 *= scale; |
---|
205 | // then add in the background |
---|
206 | f2 += bkg; |
---|
207 | |
---|
208 | p->result= f2; //scale, and add in the background |
---|
209 | return 0; |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
214 | // |
---|
215 | int |
---|
216 | PolyCoreFormX(FitParamsPtr p) |
---|
217 | { |
---|
218 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
219 | float *fp; // Pointer to single precision wave data. |
---|
220 | DOUBLE pi; |
---|
221 | DOUBLE scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
222 | DOUBLE d, g ,h; |
---|
223 | DOUBLE qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
224 | DOUBLE t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
225 | DOUBLE zp3,vpoly; |
---|
226 | DOUBLE s2y, arg1, arg2, arg3, drh1, drh2; |
---|
227 | |
---|
228 | if (p->waveHandle == NIL) { |
---|
229 | SetNaN64(&p->result); |
---|
230 | return NON_EXISTENT_WAVE; |
---|
231 | } |
---|
232 | |
---|
233 | pi = 4.0*atan(1.0); |
---|
234 | qq= p->x; |
---|
235 | |
---|
236 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
237 | case NT_FP32: |
---|
238 | fp= WaveData(p->waveHandle); |
---|
239 | scale = fp[0]; |
---|
240 | corrad = fp[1]; |
---|
241 | sig = fp[2]; |
---|
242 | del = fp[3]; |
---|
243 | drho1 = fp[4]-fp[5]; //core-shell |
---|
244 | drho2 = fp[5]-fp[6]; //shell-solvent |
---|
245 | bkg = fp[7]; |
---|
246 | |
---|
247 | break; |
---|
248 | case NT_FP64: |
---|
249 | dp= WaveData(p->waveHandle); |
---|
250 | scale = dp[0]; |
---|
251 | corrad = dp[1]; |
---|
252 | sig = dp[2]; |
---|
253 | del = dp[3]; |
---|
254 | drho1 = dp[4]-dp[5]; //core-shell |
---|
255 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
256 | bkg = dp[7]; |
---|
257 | |
---|
258 | break; |
---|
259 | default: // We can't handle this wave data type. |
---|
260 | SetNaN64(&p->result); |
---|
261 | return REQUIRES_SP_OR_DP_WAVE; |
---|
262 | } |
---|
263 | |
---|
264 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
265 | |
---|
266 | h=qq; |
---|
267 | |
---|
268 | drh1 = drho1; |
---|
269 | drh2 = drho2; |
---|
270 | g = drh2 * -1. / drh1; |
---|
271 | zp1 = zz + 1.; |
---|
272 | zp2 = zz + 2.; |
---|
273 | zp3 = zz + 3.; |
---|
274 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
275 | |
---|
276 | |
---|
277 | // remember that h is the passed in value of q for the calculation |
---|
278 | y = h *del; |
---|
279 | x = h *corrad; |
---|
280 | d = atan(x * 2. / zp1); |
---|
281 | arg1 = zp1 * d; |
---|
282 | arg2 = zp2 * d; |
---|
283 | arg3 = zp3 * d; |
---|
284 | sy = sin(y); |
---|
285 | cy = cos(y); |
---|
286 | s2y = sin(y * 2.); |
---|
287 | c2y = cos(y * 2.); |
---|
288 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
289 | c2 = g * y * (g - cy); |
---|
290 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
291 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
292 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
293 | c6 = c3 - g * g * sy * sy; |
---|
294 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
295 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
296 | c9 = g * sy * (1. - g * cy); |
---|
297 | |
---|
298 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
299 | tb1 = exp(zp1 * .5 * tb); |
---|
300 | tb2 = exp(zp2 * .5 * tb); |
---|
301 | tb3 = exp(zp3 * .5 * tb); |
---|
302 | |
---|
303 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
304 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
305 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
306 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
307 | t5 = t1 + t2 + t3 + t4; |
---|
308 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
309 | // normalize by the average volume !!! corrected for polydispersity |
---|
310 | // and convert to cm-1 |
---|
311 | form /= vpoly; |
---|
312 | form *= 1.0e8; |
---|
313 | //Scale |
---|
314 | form *= scale; |
---|
315 | // then add in the background |
---|
316 | form += bkg; |
---|
317 | |
---|
318 | p->result= (form); //scale, and add in the background |
---|
319 | return 0; |
---|
320 | } |
---|
321 | |
---|
322 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
323 | // structure factor effects are explicitly and correctly included. |
---|
324 | // |
---|
325 | int |
---|
326 | PolyHardSphereIntensityX(FitParamsPtr p) |
---|
327 | { |
---|
328 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
329 | float *fp; // Pointer to single precision wave data. |
---|
330 | DOUBLE pi; |
---|
331 | DOUBLE rad,z2,phi,cont,bkg,sigma; //my local names |
---|
332 | DOUBLE mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
333 | DOUBLE ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
334 | DOUBLE ka,zz,v1,v2,p1,p2; |
---|
335 | DOUBLE h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
336 | DOUBLE capl,capl1,capmu,capmu1,r3,pq; |
---|
337 | DOUBLE ka2,r1,heff; |
---|
338 | DOUBLE hh,k; |
---|
339 | |
---|
340 | if (p->waveHandle == NIL) { |
---|
341 | SetNaN64(&p->result); |
---|
342 | return NON_EXISTENT_WAVE; |
---|
343 | } |
---|
344 | |
---|
345 | pi = 4.0*atan(1.0); |
---|
346 | k= p->x; |
---|
347 | |
---|
348 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
349 | case NT_FP32: |
---|
350 | fp= WaveData(p->waveHandle); |
---|
351 | rad = fp[0]; // radius (A) |
---|
352 | z2 = fp[1]; //polydispersity (0<z2<1) |
---|
353 | phi = fp[2]; // volume fraction (0<phi<1) |
---|
354 | cont = fp[3]*1.0e4; // contrast (odd units) |
---|
355 | bkg = fp[4]; |
---|
356 | |
---|
357 | break; |
---|
358 | case NT_FP64: |
---|
359 | dp= WaveData(p->waveHandle); |
---|
360 | rad = dp[0]; // radius (A) |
---|
361 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
362 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
363 | cont = dp[3]*1.0e4; // contrast (odd units) |
---|
364 | bkg = dp[4]; |
---|
365 | |
---|
366 | break; |
---|
367 | default: // We can't handle this wave data type. |
---|
368 | SetNaN64(&p->result); |
---|
369 | return REQUIRES_SP_OR_DP_WAVE; |
---|
370 | } |
---|
371 | |
---|
372 | sigma = 2*rad; |
---|
373 | |
---|
374 | zz=1.0/(z2*z2)-1.0; |
---|
375 | bb = sigma/(zz+1.0); |
---|
376 | cc = zz+1.0; |
---|
377 | |
---|
378 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
379 | r1 = sigma/2.0; |
---|
380 | r3 = r1*r1*r1; |
---|
381 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
382 | rho=phi/(1.3333333333*pi*r3); |
---|
383 | t1 = rho*bb*cc; |
---|
384 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
385 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
386 | capd = 1.0-pi*t3/6.0; |
---|
387 | //************ |
---|
388 | v1=1.0/(1.0+bb*bb*k*k); |
---|
389 | v2=1.0/(4.0+bb*bb*k*k); |
---|
390 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
391 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
392 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
393 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
394 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
395 | s1=bb*cc; |
---|
396 | s2=cc*(cc+1.0)*bb*bb; |
---|
397 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
398 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
399 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
400 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
401 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
402 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
403 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
404 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
405 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
406 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
407 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
408 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
409 | |
---|
410 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
411 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
412 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
413 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
414 | |
---|
415 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
416 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
417 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
418 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
419 | |
---|
420 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
421 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
422 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
423 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
424 | |
---|
425 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
426 | |
---|
427 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
428 | |
---|
429 | //* This part computes the first integral in equation (1). It also |
---|
430 | // generates the KC approximated effective structure factor.*/ |
---|
431 | |
---|
432 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
433 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
434 | |
---|
435 | ka=k*(sigma/2.0); |
---|
436 | // |
---|
437 | hh=hint1+hint2; // this is the model intensity |
---|
438 | // |
---|
439 | heff=1.0+hint1/hint2; |
---|
440 | ka2=ka*ka; |
---|
441 | //* |
---|
442 | // heff is PY analytical solution for intensity divided by the |
---|
443 | // form factor. happ is the KC approximated effective S(q) |
---|
444 | |
---|
445 | //******************* |
---|
446 | // add in the background then return the intensity value |
---|
447 | |
---|
448 | p->result= (hh+bkg); //scale, and add in the background |
---|
449 | return 0; |
---|
450 | } |
---|
451 | |
---|
452 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
453 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
454 | // |
---|
455 | int |
---|
456 | BimodalSchulzSpheresX(FitParamsPtr p) |
---|
457 | { |
---|
458 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
459 | float *fp; // Pointer to single precision wave data. |
---|
460 | DOUBLE x,pq; |
---|
461 | DOUBLE scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
462 | DOUBLE scale2,ravg2,pd2,rho2; //my local names |
---|
463 | |
---|
464 | if (p->waveHandle == NIL) { |
---|
465 | SetNaN64(&p->result); |
---|
466 | return NON_EXISTENT_WAVE; |
---|
467 | } |
---|
468 | |
---|
469 | x= p->x; |
---|
470 | |
---|
471 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
472 | case NT_FP32: |
---|
473 | fp= WaveData(p->waveHandle); |
---|
474 | scale = fp[0]; |
---|
475 | ravg = fp[1]; |
---|
476 | pd = fp[2]; |
---|
477 | rho = fp[3]; |
---|
478 | scale2 = fp[4]; |
---|
479 | ravg2 = fp[5]; |
---|
480 | pd2 = fp[6]; |
---|
481 | rho2 = fp[7]; |
---|
482 | rhos = fp[8]; |
---|
483 | bkg = fp[9]; |
---|
484 | |
---|
485 | break; |
---|
486 | case NT_FP64: |
---|
487 | dp= WaveData(p->waveHandle); |
---|
488 | scale = dp[0]; |
---|
489 | ravg = dp[1]; |
---|
490 | pd = dp[2]; |
---|
491 | rho = dp[3]; |
---|
492 | scale2 = dp[4]; |
---|
493 | ravg2 = dp[5]; |
---|
494 | pd2 = dp[6]; |
---|
495 | rho2 = dp[7]; |
---|
496 | rhos = dp[8]; |
---|
497 | bkg = dp[9]; |
---|
498 | |
---|
499 | break; |
---|
500 | default: // We can't handle this wave data type. |
---|
501 | SetNaN64(&p->result); |
---|
502 | return REQUIRES_SP_OR_DP_WAVE; |
---|
503 | } |
---|
504 | |
---|
505 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
506 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
507 | // add in the background |
---|
508 | pq += bkg; |
---|
509 | |
---|
510 | p->result= pq; //scale, and add in the background |
---|
511 | return 0; |
---|
512 | } |
---|
513 | |
---|
514 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
515 | // |
---|
516 | int |
---|
517 | SchulzSpheresX(FitParamsPtr p) |
---|
518 | { |
---|
519 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
520 | float *fp; // Pointer to single precision wave data. |
---|
521 | DOUBLE x,pq; |
---|
522 | DOUBLE scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
523 | |
---|
524 | if (p->waveHandle == NIL) { |
---|
525 | SetNaN64(&p->result); |
---|
526 | return NON_EXISTENT_WAVE; |
---|
527 | } |
---|
528 | |
---|
529 | x= p->x; |
---|
530 | |
---|
531 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
532 | case NT_FP32: |
---|
533 | fp= WaveData(p->waveHandle); |
---|
534 | scale = fp[0]; |
---|
535 | ravg = fp[1]; |
---|
536 | pd = fp[2]; |
---|
537 | rho = fp[3]; |
---|
538 | rhos = fp[4]; |
---|
539 | bkg = fp[5]; |
---|
540 | |
---|
541 | break; |
---|
542 | case NT_FP64: |
---|
543 | dp= WaveData(p->waveHandle); |
---|
544 | scale = dp[0]; |
---|
545 | ravg = dp[1]; |
---|
546 | pd = dp[2]; |
---|
547 | rho = dp[3]; |
---|
548 | rhos = dp[4]; |
---|
549 | bkg = dp[5]; |
---|
550 | |
---|
551 | break; |
---|
552 | default: // We can't handle this wave data type. |
---|
553 | SetNaN64(&p->result); |
---|
554 | return REQUIRES_SP_OR_DP_WAVE; |
---|
555 | } |
---|
556 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
557 | // add in the background |
---|
558 | pq += bkg; |
---|
559 | |
---|
560 | p->result= pq; //scale, and add in the background |
---|
561 | return 0; |
---|
562 | } |
---|
563 | |
---|
564 | // calculates everything but the background |
---|
565 | DOUBLE |
---|
566 | SchulzSphere_Fn(DOUBLE scale, DOUBLE ravg, DOUBLE pd, DOUBLE rho, DOUBLE rhos, DOUBLE x) |
---|
567 | { |
---|
568 | DOUBLE zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
569 | DOUBLE aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
570 | DOUBLE v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
571 | |
---|
572 | pi = 4.0*atan(1.0); |
---|
573 | delrho = rho-rhos; |
---|
574 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
575 | |
---|
576 | zp1 = zz + 1.0; |
---|
577 | zp2 = zz + 2.0; |
---|
578 | zp3 = zz + 3.0; |
---|
579 | zp4 = zz + 4.0; |
---|
580 | zp5 = zz + 5.0; |
---|
581 | zp6 = zz + 6.0; |
---|
582 | zp7 = zz + 7.0; |
---|
583 | // |
---|
584 | aa = (zz+1)/x/ravg; |
---|
585 | |
---|
586 | at1 = atan(1.0/aa); |
---|
587 | at2 = atan(2.0/aa); |
---|
588 | // |
---|
589 | // calculations are performed to avoid large # errors |
---|
590 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
591 | // |
---|
592 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
593 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
594 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
595 | // print t1,t2,t3 |
---|
596 | rt1 = pow(10,t1); |
---|
597 | rt2 = pow(10,t2); |
---|
598 | rt3 = pow(10,t3); |
---|
599 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
600 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
601 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
602 | g1 = (v1+v2+v3); |
---|
603 | |
---|
604 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
605 | pq = pow(10,pq)*8*pi*pi*delrho*delrho; |
---|
606 | |
---|
607 | // |
---|
608 | // beta factor is not used here, but could be for the |
---|
609 | // decoupling approximation |
---|
610 | // |
---|
611 | // g11 = g1 |
---|
612 | // gd = -zp7*log(aa) |
---|
613 | // g1 = log(g11) + gd |
---|
614 | // |
---|
615 | // t1 = zp1*at1 |
---|
616 | // t2 = zp2*at1 |
---|
617 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
618 | // g22 = g2*g2 |
---|
619 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
620 | // beta = 2*alog(beta) |
---|
621 | |
---|
622 | //re-normalize by the average volume |
---|
623 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
624 | pq /= vpoly; |
---|
625 | //scale, convert to cm^-1 |
---|
626 | pq *= scale * 1.0e8; |
---|
627 | |
---|
628 | return(pq); |
---|
629 | } |
---|
630 | |
---|
631 | // scattering from a uniform sphere with a rectangular size distribution |
---|
632 | // |
---|
633 | int |
---|
634 | PolyRectSpheresX(FitParamsPtr p) |
---|
635 | { |
---|
636 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
637 | float *fp; // Pointer to single precision wave data. |
---|
638 | DOUBLE pi,x; |
---|
639 | DOUBLE scale,rad,pd,cont,bkg; //my local names |
---|
640 | DOUBLE inten,h1,qw,qr,width,sig,averad3; |
---|
641 | |
---|
642 | if (p->waveHandle == NIL) { |
---|
643 | SetNaN64(&p->result); |
---|
644 | return NON_EXISTENT_WAVE; |
---|
645 | } |
---|
646 | |
---|
647 | pi = 4.0*atan(1.0); |
---|
648 | x= p->x; |
---|
649 | |
---|
650 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
651 | case NT_FP32: |
---|
652 | fp= WaveData(p->waveHandle); |
---|
653 | scale = fp[0]; |
---|
654 | rad = fp[1]; // radius (A) |
---|
655 | pd = fp[2]; //polydispersity of rectangular distribution |
---|
656 | cont = fp[3]; // contrast (A^-2) |
---|
657 | bkg = fp[4]; |
---|
658 | |
---|
659 | break; |
---|
660 | case NT_FP64: |
---|
661 | dp= WaveData(p->waveHandle); |
---|
662 | scale = dp[0]; |
---|
663 | rad = dp[1]; // radius (A) |
---|
664 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
665 | cont = dp[3]; // contrast (A^-2) |
---|
666 | bkg = dp[4]; |
---|
667 | |
---|
668 | |
---|
669 | break; |
---|
670 | default: // We can't handle this wave data type. |
---|
671 | SetNaN64(&p->result); |
---|
672 | return REQUIRES_SP_OR_DP_WAVE; |
---|
673 | } |
---|
674 | |
---|
675 | // as usual, poly = sig/ravg |
---|
676 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
677 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
678 | |
---|
679 | sig = pd*rad; |
---|
680 | width = sqrt(3.0)*sig; |
---|
681 | |
---|
682 | //x is the q-value |
---|
683 | qw = x*width; |
---|
684 | qr = x*rad; |
---|
685 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
686 | h1 -= 5.0/2.0*cos(2*qr)*sin(qw)*cos(qw); |
---|
687 | h1 += 0.5*qr*qr*cos(2*qr)*sin(2*qw); |
---|
688 | h1 += 0.5*qw*qw*cos(2*qr)*sin(2*qw); |
---|
689 | h1 += qw*qr*sin(2*qr)*cos(2*qw); |
---|
690 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
691 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
692 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
693 | |
---|
694 | // calculate P(q) = <f^2> |
---|
695 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
696 | |
---|
697 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
698 | // with |
---|
699 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
700 | |
---|
701 | // normalize to the average volume |
---|
702 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
703 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
704 | |
---|
705 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
706 | inten /= 4.0*pi/3.0*averad3; |
---|
707 | //resacle to 1/cm |
---|
708 | inten *= 1.0e8; |
---|
709 | //scale the result |
---|
710 | inten *= scale; |
---|
711 | // then add in the background |
---|
712 | inten += bkg; |
---|
713 | |
---|
714 | p->result= inten; //scale, and add in the background |
---|
715 | return 0; |
---|
716 | } |
---|
717 | |
---|
718 | |
---|
719 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
720 | // |
---|
721 | int |
---|
722 | GaussPolySphereX(FitParamsPtr p) |
---|
723 | { |
---|
724 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
725 | float *fp; // Pointer to single precision wave data. |
---|
726 | DOUBLE pi,x; |
---|
727 | DOUBLE scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
728 | DOUBLE va,vb,zi,yy,summ,inten; |
---|
729 | int nord=20,ii; |
---|
730 | |
---|
731 | if (p->waveHandle == NIL) { |
---|
732 | SetNaN64(&p->result); |
---|
733 | return NON_EXISTENT_WAVE; |
---|
734 | } |
---|
735 | |
---|
736 | pi = 4.0*atan(1.0); |
---|
737 | x= p->x; |
---|
738 | |
---|
739 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
740 | case NT_FP32: |
---|
741 | fp= WaveData(p->waveHandle); |
---|
742 | scale=fp[0]; |
---|
743 | rad=fp[1]; |
---|
744 | pd=fp[2]; |
---|
745 | sig=pd*rad; |
---|
746 | rho=fp[3]; |
---|
747 | rhos=fp[4]; |
---|
748 | delrho=rho-rhos; |
---|
749 | bkg=fp[5]; |
---|
750 | |
---|
751 | break; |
---|
752 | case NT_FP64: |
---|
753 | dp= WaveData(p->waveHandle); |
---|
754 | scale=dp[0]; |
---|
755 | rad=dp[1]; |
---|
756 | pd=dp[2]; |
---|
757 | sig=pd*rad; |
---|
758 | rho=dp[3]; |
---|
759 | rhos=dp[4]; |
---|
760 | delrho=rho-rhos; |
---|
761 | bkg=dp[5]; |
---|
762 | |
---|
763 | break; |
---|
764 | default: // We can't handle this wave data type. |
---|
765 | SetNaN64(&p->result); |
---|
766 | return REQUIRES_SP_OR_DP_WAVE; |
---|
767 | } |
---|
768 | |
---|
769 | va = -4.0*sig + rad; |
---|
770 | if (va<0) { |
---|
771 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
772 | } |
---|
773 | vb = 4.0*sig +rad; |
---|
774 | |
---|
775 | summ = 0.0; // initialize integral |
---|
776 | for(ii=0;ii<nord;ii+=1) { |
---|
777 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
778 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
779 | // calculate sphere scattering |
---|
780 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
781 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
782 | yy *= yy; |
---|
783 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
784 | |
---|
785 | summ += yy; //add to the running total of the quadrature |
---|
786 | } |
---|
787 | // calculate value of integral to return |
---|
788 | inten = (vb-va)/2.0*summ; |
---|
789 | |
---|
790 | //re-normalize by polydisperse sphere volume |
---|
791 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
792 | |
---|
793 | inten *= 1.0e8; |
---|
794 | inten *= scale; |
---|
795 | inten += bkg; |
---|
796 | |
---|
797 | p->result= inten; //scale, and add in the background |
---|
798 | return 0; |
---|
799 | } |
---|
800 | |
---|
801 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
802 | // |
---|
803 | int |
---|
804 | LogNormalPolySphereX(FitParamsPtr p) |
---|
805 | { |
---|
806 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
807 | float *fp; // Pointer to single precision wave data. |
---|
808 | DOUBLE pi,x; |
---|
809 | DOUBLE scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
810 | DOUBLE va,vb,zi,yy,summ,inten; |
---|
811 | int nord=76,ii; |
---|
812 | |
---|
813 | if (p->waveHandle == NIL) { |
---|
814 | SetNaN64(&p->result); |
---|
815 | return NON_EXISTENT_WAVE; |
---|
816 | } |
---|
817 | |
---|
818 | pi = 4.0*atan(1.0); |
---|
819 | x= p->x; |
---|
820 | |
---|
821 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
822 | case NT_FP32: |
---|
823 | fp= WaveData(p->waveHandle); |
---|
824 | scale=fp[0]; |
---|
825 | rad=fp[1]; //rad is the median radius |
---|
826 | mu = log(fp[1]); |
---|
827 | sig=fp[2]; |
---|
828 | rho=fp[3]; |
---|
829 | rhos=fp[4]; |
---|
830 | delrho=rho-rhos; |
---|
831 | bkg=fp[5]; |
---|
832 | |
---|
833 | break; |
---|
834 | case NT_FP64: |
---|
835 | dp= WaveData(p->waveHandle); |
---|
836 | scale=dp[0]; |
---|
837 | rad=dp[1]; //rad is the median radius |
---|
838 | mu = log(dp[1]); |
---|
839 | sig=dp[2]; |
---|
840 | rho=dp[3]; |
---|
841 | rhos=dp[4]; |
---|
842 | delrho=rho-rhos; |
---|
843 | bkg=dp[5]; |
---|
844 | |
---|
845 | break; |
---|
846 | default: // We can't handle this wave data type. |
---|
847 | SetNaN64(&p->result); |
---|
848 | return REQUIRES_SP_OR_DP_WAVE; |
---|
849 | } |
---|
850 | |
---|
851 | va = -3.5*sig + mu; |
---|
852 | va = exp(va); |
---|
853 | if (va<0) { |
---|
854 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
855 | } |
---|
856 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
857 | vb = exp(vb); |
---|
858 | |
---|
859 | summ = 0.0; // initialize integral |
---|
860 | for(ii=0;ii<nord;ii+=1) { |
---|
861 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
862 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
863 | // calculate sphere scattering |
---|
864 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
865 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
866 | yy *= yy; |
---|
867 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
868 | |
---|
869 | summ += yy; //add to the running total of the quadrature |
---|
870 | } |
---|
871 | // calculate value of integral to return |
---|
872 | inten = (vb-va)/2.0*summ; |
---|
873 | |
---|
874 | //re-normalize by polydisperse sphere volume |
---|
875 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
876 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
877 | |
---|
878 | inten *= 1.0e8; |
---|
879 | inten *= scale; |
---|
880 | inten += bkg; |
---|
881 | |
---|
882 | p->result= inten; //scale, and add in the background |
---|
883 | return 0; |
---|
884 | } |
---|
885 | |
---|
886 | static DOUBLE |
---|
887 | LogNormal_distr(DOUBLE sig, DOUBLE mu, DOUBLE pt) |
---|
888 | { |
---|
889 | DOUBLE retval,pi; |
---|
890 | |
---|
891 | pi = 4.0*atan(1.0); |
---|
892 | retval = (1/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
893 | return(retval); |
---|
894 | } |
---|
895 | |
---|
896 | static DOUBLE |
---|
897 | Gauss_distr(DOUBLE sig, DOUBLE avg, DOUBLE pt) |
---|
898 | { |
---|
899 | DOUBLE retval,Pi; |
---|
900 | |
---|
901 | Pi = 4.0*atan(1.0); |
---|
902 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
903 | return(retval); |
---|
904 | } |
---|
905 | |
---|
906 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
907 | // - the polydispersity is of the WHOLE sphere |
---|
908 | // |
---|
909 | int |
---|
910 | PolyCoreShellRatioX(FitParamsPtr p) |
---|
911 | { |
---|
912 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
913 | float *fp; // Pointer to single precision wave data. |
---|
914 | DOUBLE pi,x; |
---|
915 | DOUBLE scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
916 | DOUBLE sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
917 | DOUBLE pi43,c1,c2,form,volume,arg1,arg2; |
---|
918 | |
---|
919 | if (p->waveHandle == NIL) { |
---|
920 | SetNaN64(&p->result); |
---|
921 | return NON_EXISTENT_WAVE; |
---|
922 | } |
---|
923 | |
---|
924 | pi = 4.0*atan(1.0); |
---|
925 | x= p->x; |
---|
926 | |
---|
927 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
928 | case NT_FP32: |
---|
929 | fp= WaveData(p->waveHandle); |
---|
930 | scale = fp[0]; |
---|
931 | corrad = fp[1]; |
---|
932 | thick = fp[2]; |
---|
933 | sig = fp[3]; |
---|
934 | sld1 = fp[4]; |
---|
935 | sld2 = fp[5]; |
---|
936 | sld3 = fp[6]; |
---|
937 | bkg = fp[7]; |
---|
938 | |
---|
939 | break; |
---|
940 | case NT_FP64: |
---|
941 | dp= WaveData(p->waveHandle); |
---|
942 | scale = dp[0]; |
---|
943 | corrad = dp[1]; |
---|
944 | thick = dp[2]; |
---|
945 | sig = dp[3]; |
---|
946 | sld1 = dp[4]; |
---|
947 | sld2 = dp[5]; |
---|
948 | sld3 = dp[6]; |
---|
949 | bkg = dp[7]; |
---|
950 | |
---|
951 | break; |
---|
952 | default: // We can't handle this wave data type. |
---|
953 | SetNaN64(&p->result); |
---|
954 | return REQUIRES_SP_OR_DP_WAVE; |
---|
955 | } |
---|
956 | |
---|
957 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
958 | shlrad = corrad + thick; |
---|
959 | drho1 = sld1-sld2; //core-shell |
---|
960 | drho2 = sld2-sld3; //shell-solvent |
---|
961 | zp1 = zz + 1.; |
---|
962 | zp2 = zz + 2.; |
---|
963 | zp3 = zz + 3.; |
---|
964 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
965 | |
---|
966 | // the beta factor is not calculated |
---|
967 | // the calculated form factor <f^2> has units [length^2] |
---|
968 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
969 | // conversion to get to absolute scale |
---|
970 | |
---|
971 | pi43=4.0/3.0*pi; |
---|
972 | pp=corrad/shlrad; |
---|
973 | volume=pi43*shlrad*shlrad*shlrad; |
---|
974 | c1=drho1*volume; |
---|
975 | c2=drho2*volume; |
---|
976 | |
---|
977 | arg1 = x*shlrad*pp; |
---|
978 | arg2 = x*shlrad; |
---|
979 | |
---|
980 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
981 | form += c2*c2*fnt2(arg2,zz); |
---|
982 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
983 | |
---|
984 | //convert the result to [cm^-1] |
---|
985 | |
---|
986 | //scale the result |
---|
987 | // - divide by the polydisperse volume, mult by 10^8 |
---|
988 | form /= vpoly; |
---|
989 | form *= 1.0e8; |
---|
990 | form *= scale; |
---|
991 | |
---|
992 | //add in the background |
---|
993 | form += bkg; |
---|
994 | |
---|
995 | p->result= form; //scale, and add in the background |
---|
996 | return 0; |
---|
997 | } |
---|
998 | |
---|
999 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1000 | //c |
---|
1001 | //c function fnt2(y,z) |
---|
1002 | //c |
---|
1003 | DOUBLE |
---|
1004 | fnt2(DOUBLE yy, DOUBLE zz) |
---|
1005 | { |
---|
1006 | DOUBLE z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
1007 | |
---|
1008 | z1=zz+1.0; |
---|
1009 | z2=zz+2.0; |
---|
1010 | z3=zz+3.0; |
---|
1011 | u=yy/z1; |
---|
1012 | ww=atan(2.0*u); |
---|
1013 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
1014 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
1015 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
1016 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
1017 | |
---|
1018 | return(ans); |
---|
1019 | } |
---|
1020 | |
---|
1021 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1022 | //c |
---|
1023 | //c function fnt3(y,p,z) |
---|
1024 | //c |
---|
1025 | DOUBLE |
---|
1026 | fnt3(DOUBLE yy, DOUBLE pp, DOUBLE zz) |
---|
1027 | { |
---|
1028 | DOUBLE z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
1029 | |
---|
1030 | z1=zz+1.0; |
---|
1031 | z2=zz+2.0; |
---|
1032 | z3=zz+3.0; |
---|
1033 | yp=(1.0+pp)*yy; |
---|
1034 | yn=(1.0-pp)*yy; |
---|
1035 | up=yp/z1; |
---|
1036 | un=yn/z1; |
---|
1037 | vp=atan(up); |
---|
1038 | vn=atan(un); |
---|
1039 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
1040 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
1041 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
1042 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
1043 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
1044 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
1045 | ans=4.5/z1/pow(yy,6); |
---|
1046 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
1047 | |
---|
1048 | return(ans); |
---|
1049 | } |
---|
1050 | |
---|
1051 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
1052 | // are properly accounted for... |
---|
1053 | // Input (fitting) variables are: |
---|
1054 | // larger sphere radius(angstroms) = guess[0] |
---|
1055 | // smaller sphere radius (A) = w[1] |
---|
1056 | // number fraction of larger spheres = guess[2] |
---|
1057 | // total volume fraction of spheres = guess[3] |
---|
1058 | // size ratio, alpha(0<a<1) = derived |
---|
1059 | // SLD(A-2) of larger particle = guess[4] |
---|
1060 | // SLD(A-2) of smaller particle = guess[5] |
---|
1061 | // SLD(A-2) of the solvent = guess[6] |
---|
1062 | // background = guess[7] |
---|
1063 | int |
---|
1064 | BinaryHSX(FitParamsPtr p) |
---|
1065 | { |
---|
1066 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1067 | float *fp; // Pointer to single precision wave data. |
---|
1068 | DOUBLE x,pi; |
---|
1069 | DOUBLE r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
1070 | DOUBLE psf11,psf12,psf22; |
---|
1071 | DOUBLE phi1,phi2,phr,a3; |
---|
1072 | DOUBLE v1,v2,n1,n2,qr1,qr2,b1,b2; |
---|
1073 | int err; |
---|
1074 | |
---|
1075 | if (p->waveHandle == NIL) { |
---|
1076 | SetNaN64(&p->result); |
---|
1077 | return NON_EXISTENT_WAVE; |
---|
1078 | } |
---|
1079 | |
---|
1080 | pi = 4.0*atan(1.0); |
---|
1081 | x= p->x; |
---|
1082 | |
---|
1083 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1084 | case NT_FP32: |
---|
1085 | fp= WaveData(p->waveHandle); |
---|
1086 | r2 = fp[0]; |
---|
1087 | r1 = fp[1]; |
---|
1088 | phi2 = fp[2]; |
---|
1089 | phi1 = fp[3]; |
---|
1090 | rho2 = fp[4]; |
---|
1091 | rho1 = fp[5]; |
---|
1092 | rhos = fp[6]; |
---|
1093 | bgd = fp[7]; |
---|
1094 | |
---|
1095 | break; |
---|
1096 | case NT_FP64: |
---|
1097 | dp= WaveData(p->waveHandle); |
---|
1098 | r2 = dp[0]; |
---|
1099 | r1 = dp[1]; |
---|
1100 | phi2 = dp[2]; |
---|
1101 | phi1 = dp[3]; |
---|
1102 | rho2 = dp[4]; |
---|
1103 | rho1 = dp[5]; |
---|
1104 | rhos = dp[6]; |
---|
1105 | bgd = dp[7]; |
---|
1106 | |
---|
1107 | break; |
---|
1108 | default: // We can't handle this wave data type. |
---|
1109 | SetNaN64(&p->result); |
---|
1110 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1111 | } |
---|
1112 | phi = phi1 + phi2; |
---|
1113 | aa = r1/r2; |
---|
1114 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
1115 | a3=aa*aa*aa; |
---|
1116 | phr=phi2/phi; |
---|
1117 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
1118 | // calculate the PSF's here |
---|
1119 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
1120 | |
---|
1121 | // /* do form factor calculations */ |
---|
1122 | |
---|
1123 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
1124 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
1125 | |
---|
1126 | n1 = phi1/v1; |
---|
1127 | n2 = phi2/v2; |
---|
1128 | |
---|
1129 | qr1 = r1*x; |
---|
1130 | qr2 = r2*x; |
---|
1131 | |
---|
1132 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*(sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
1133 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*(sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
1134 | inten = n1*b1*b1*psf11; |
---|
1135 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
1136 | inten += n2*b2*b2*psf22; |
---|
1137 | ///* convert I(1/A) to (1/cm) */ |
---|
1138 | inten *= 1.0e8; |
---|
1139 | |
---|
1140 | inten += bgd; |
---|
1141 | |
---|
1142 | p->result= inten; //scale, and add in the background |
---|
1143 | return 0; |
---|
1144 | } |
---|
1145 | |
---|
1146 | int |
---|
1147 | BinaryHS_PSF11X(FitParamsPtr p) |
---|
1148 | { |
---|
1149 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1150 | float *fp; // Pointer to single precision wave data. |
---|
1151 | DOUBLE x,pi; |
---|
1152 | DOUBLE r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
1153 | DOUBLE psf11,psf12,psf22; |
---|
1154 | DOUBLE phi1,phi2,phr,a3; |
---|
1155 | int err; |
---|
1156 | |
---|
1157 | if (p->waveHandle == NIL) { |
---|
1158 | SetNaN64(&p->result); |
---|
1159 | return NON_EXISTENT_WAVE; |
---|
1160 | } |
---|
1161 | |
---|
1162 | pi = 4.0*atan(1.0); |
---|
1163 | x= p->x; |
---|
1164 | |
---|
1165 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1166 | case NT_FP32: |
---|
1167 | fp= WaveData(p->waveHandle); |
---|
1168 | r2 = fp[0]; |
---|
1169 | r1 = fp[1]; |
---|
1170 | phi2 = fp[2]; |
---|
1171 | phi1 = fp[3]; |
---|
1172 | rho2 = fp[4]; |
---|
1173 | rho1 = fp[5]; |
---|
1174 | rhos = fp[6]; |
---|
1175 | bgd = fp[7]; |
---|
1176 | |
---|
1177 | break; |
---|
1178 | case NT_FP64: |
---|
1179 | dp= WaveData(p->waveHandle); |
---|
1180 | r2 = dp[0]; |
---|
1181 | r1 = dp[1]; |
---|
1182 | phi2 = dp[2]; |
---|
1183 | phi1 = dp[3]; |
---|
1184 | rho2 = dp[4]; |
---|
1185 | rho1 = dp[5]; |
---|
1186 | rhos = dp[6]; |
---|
1187 | bgd = dp[7]; |
---|
1188 | |
---|
1189 | break; |
---|
1190 | default: // We can't handle this wave data type. |
---|
1191 | SetNaN64(&p->result); |
---|
1192 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1193 | } |
---|
1194 | phi = phi1 + phi2; |
---|
1195 | aa = r1/r2; |
---|
1196 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
1197 | a3=aa*aa*aa; |
---|
1198 | phr=phi2/phi; |
---|
1199 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
1200 | // calculate the PSF's here |
---|
1201 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
1202 | |
---|
1203 | p->result= psf11; //scale, and add in the background |
---|
1204 | return 0; |
---|
1205 | } |
---|
1206 | |
---|
1207 | int |
---|
1208 | BinaryHS_PSF12X(FitParamsPtr p) |
---|
1209 | { |
---|
1210 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1211 | float *fp; // Pointer to single precision wave data. |
---|
1212 | DOUBLE x,pi; |
---|
1213 | DOUBLE r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
1214 | DOUBLE psf11,psf12,psf22; |
---|
1215 | DOUBLE phi1,phi2,phr,a3; |
---|
1216 | int err; |
---|
1217 | |
---|
1218 | if (p->waveHandle == NIL) { |
---|
1219 | SetNaN64(&p->result); |
---|
1220 | return NON_EXISTENT_WAVE; |
---|
1221 | } |
---|
1222 | |
---|
1223 | pi = 4.0*atan(1.0); |
---|
1224 | x= p->x; |
---|
1225 | |
---|
1226 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1227 | case NT_FP32: |
---|
1228 | fp= WaveData(p->waveHandle); |
---|
1229 | r2 = fp[0]; |
---|
1230 | r1 = fp[1]; |
---|
1231 | phi2 = fp[2]; |
---|
1232 | phi1 = fp[3]; |
---|
1233 | rho2 = fp[4]; |
---|
1234 | rho1 = fp[5]; |
---|
1235 | rhos = fp[6]; |
---|
1236 | bgd = fp[7]; |
---|
1237 | |
---|
1238 | break; |
---|
1239 | case NT_FP64: |
---|
1240 | dp= WaveData(p->waveHandle); |
---|
1241 | r2 = dp[0]; |
---|
1242 | r1 = dp[1]; |
---|
1243 | phi2 = dp[2]; |
---|
1244 | phi1 = dp[3]; |
---|
1245 | rho2 = dp[4]; |
---|
1246 | rho1 = dp[5]; |
---|
1247 | rhos = dp[6]; |
---|
1248 | bgd = dp[7]; |
---|
1249 | |
---|
1250 | break; |
---|
1251 | default: // We can't handle this wave data type. |
---|
1252 | SetNaN64(&p->result); |
---|
1253 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1254 | } |
---|
1255 | phi = phi1 + phi2; |
---|
1256 | aa = r1/r2; |
---|
1257 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
1258 | a3=aa*aa*aa; |
---|
1259 | phr=phi2/phi; |
---|
1260 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
1261 | // calculate the PSF's here |
---|
1262 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
1263 | |
---|
1264 | p->result= psf12; //scale, and add in the background |
---|
1265 | return 0; |
---|
1266 | } |
---|
1267 | |
---|
1268 | int |
---|
1269 | BinaryHS_PSF22X(FitParamsPtr p) |
---|
1270 | { |
---|
1271 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1272 | float *fp; // Pointer to single precision wave data. |
---|
1273 | DOUBLE x,pi; |
---|
1274 | DOUBLE r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
1275 | DOUBLE psf11,psf12,psf22; |
---|
1276 | DOUBLE phi1,phi2,phr,a3; |
---|
1277 | int err; |
---|
1278 | |
---|
1279 | if (p->waveHandle == NIL) { |
---|
1280 | SetNaN64(&p->result); |
---|
1281 | return NON_EXISTENT_WAVE; |
---|
1282 | } |
---|
1283 | |
---|
1284 | pi = 4.0*atan(1.0); |
---|
1285 | x= p->x; |
---|
1286 | |
---|
1287 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1288 | case NT_FP32: |
---|
1289 | fp= WaveData(p->waveHandle); |
---|
1290 | r2 = fp[0]; |
---|
1291 | r1 = fp[1]; |
---|
1292 | phi2 = fp[2]; |
---|
1293 | phi1 = fp[3]; |
---|
1294 | rho2 = fp[4]; |
---|
1295 | rho1 = fp[5]; |
---|
1296 | rhos = fp[6]; |
---|
1297 | bgd = fp[7]; |
---|
1298 | |
---|
1299 | break; |
---|
1300 | case NT_FP64: |
---|
1301 | dp= WaveData(p->waveHandle); |
---|
1302 | r2 = dp[0]; |
---|
1303 | r1 = dp[1]; |
---|
1304 | phi2 = dp[2]; |
---|
1305 | phi1 = dp[3]; |
---|
1306 | rho2 = dp[4]; |
---|
1307 | rho1 = dp[5]; |
---|
1308 | rhos = dp[6]; |
---|
1309 | bgd = dp[7]; |
---|
1310 | |
---|
1311 | break; |
---|
1312 | default: // We can't handle this wave data type. |
---|
1313 | SetNaN64(&p->result); |
---|
1314 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1315 | } |
---|
1316 | phi = phi1 + phi2; |
---|
1317 | aa = r1/r2; |
---|
1318 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
1319 | a3=aa*aa*aa; |
---|
1320 | phr=phi2/phi; |
---|
1321 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
1322 | // calculate the PSF's here |
---|
1323 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
1324 | |
---|
1325 | p->result= psf22; //scale, and add in the background |
---|
1326 | return 0; |
---|
1327 | } |
---|
1328 | |
---|
1329 | int |
---|
1330 | ashcroft(DOUBLE qval, DOUBLE r2, DOUBLE nf2, DOUBLE aa, DOUBLE phi, DOUBLE *s11, DOUBLE *s22, DOUBLE *s12) |
---|
1331 | { |
---|
1332 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
1333 | |
---|
1334 | // calculate constant terms |
---|
1335 | DOUBLE s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
1336 | DOUBLE a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
1337 | DOUBLE err=0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
1338 | DOUBLE c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
1339 | DOUBLE t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
1340 | |
---|
1341 | s2 = 2.0*r2; |
---|
1342 | s1 = aa*s2; |
---|
1343 | v = phi; |
---|
1344 | a3 = aa*aa*aa; |
---|
1345 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
1346 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
1347 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
1348 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
1349 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
1350 | wmv = 1/(1.-v); |
---|
1351 | wmv3 = wmv*wmv*wmv; |
---|
1352 | wmv4 = wmv*wmv3; |
---|
1353 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
1354 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
1355 | a2=a2i/a3; |
---|
1356 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
1357 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
1358 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
1359 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
1360 | gm12=2.*gm1*(1.-aa)/aa; |
---|
1361 | //c |
---|
1362 | //c calculate the direct correlation functions and print results |
---|
1363 | //c |
---|
1364 | // do 20 j=1,npts |
---|
1365 | |
---|
1366 | yy=qval*s2; |
---|
1367 | //c calculate direct correlation functions |
---|
1368 | //c ----c11 |
---|
1369 | ay=aa*yy; |
---|
1370 | ay2 = ay*ay; |
---|
1371 | ay3 = ay*ay*ay; |
---|
1372 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
1373 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
1374 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
1375 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
1376 | |
---|
1377 | //c ------c22 |
---|
1378 | y2=yy*yy; |
---|
1379 | y3=yy*y2; |
---|
1380 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
1381 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
1382 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
1383 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
1384 | |
---|
1385 | //c -----c12 |
---|
1386 | yl=.5*yy*(1.-aa); |
---|
1387 | yl3=yl*yl*yl; |
---|
1388 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
1389 | y1=aa*yy; |
---|
1390 | y13 = y1*y1*y1; |
---|
1391 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
1392 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
1393 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
1394 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
1395 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
1396 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
1397 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
1398 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
1399 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
1400 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
1401 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
1402 | ttt4=a1*(t41+t42)/y1; |
---|
1403 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
1404 | |
---|
1405 | c11=f11; |
---|
1406 | c22=f22; |
---|
1407 | c12=f12; |
---|
1408 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
1409 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
1410 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
1411 | |
---|
1412 | return(err); |
---|
1413 | } |
---|
1414 | |
---|
1415 | |
---|
1416 | |
---|
1417 | /* |
---|
1418 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
1419 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1420 | //must always be a surfactant layer on the outside |
---|
1421 | // |
---|
1422 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1423 | // resolution smeared version gives he most appropriate view of the model |
---|
1424 | |
---|
1425 | Warning: |
---|
1426 | The call to WaveData() below returns a pointer to the middle |
---|
1427 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1428 | calculations could cause memory to move, you should copy the coefficient |
---|
1429 | values to local variables or an array before such operations. |
---|
1430 | */ |
---|
1431 | int |
---|
1432 | MultiShellX(FitParamsPtr p) |
---|
1433 | { |
---|
1434 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1435 | float *fp; // Pointer to single precision wave data. |
---|
1436 | DOUBLE x; |
---|
1437 | DOUBLE scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
1438 | int ii; |
---|
1439 | DOUBLE fval,voli,ri,sldi; |
---|
1440 | |
---|
1441 | if (p->waveHandle == NIL) { |
---|
1442 | SetNaN64(&p->result); |
---|
1443 | return NON_EXISTENT_WAVE; |
---|
1444 | } |
---|
1445 | |
---|
1446 | x= p->x; |
---|
1447 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1448 | case NT_FP32: |
---|
1449 | fp= WaveData(p->waveHandle); |
---|
1450 | scale = fp[0]; |
---|
1451 | rcore = fp[1]; |
---|
1452 | ts = fp[2]; |
---|
1453 | tw = fp[3]; |
---|
1454 | rhocore = fp[4]; |
---|
1455 | rhoshel = fp[5]; |
---|
1456 | num = fp[6]; |
---|
1457 | bkg = fp[7]; |
---|
1458 | |
---|
1459 | //calculate with a loop, two shells at a time |
---|
1460 | |
---|
1461 | ii=0; |
---|
1462 | fval=0; |
---|
1463 | |
---|
1464 | do { |
---|
1465 | ri = rcore + (DOUBLE)ii*ts + (DOUBLE)ii*tw; |
---|
1466 | voli = 4*pi/3*ri*ri*ri; |
---|
1467 | sldi = rhocore-rhoshel; |
---|
1468 | fval += voli*sldi*F_func(ri*x); |
---|
1469 | ri += ts; |
---|
1470 | voli = 4*pi/3*ri*ri*ri; |
---|
1471 | sldi = rhoshel-rhocore; |
---|
1472 | fval += voli*sldi*F_func(ri*x); |
---|
1473 | ii+=1; //do 2 layers at a time |
---|
1474 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1475 | |
---|
1476 | |
---|
1477 | break; |
---|
1478 | case NT_FP64: |
---|
1479 | dp= WaveData(p->waveHandle); |
---|
1480 | scale = dp[0]; |
---|
1481 | rcore = dp[1]; |
---|
1482 | ts = dp[2]; |
---|
1483 | tw = dp[3]; |
---|
1484 | rhocore = dp[4]; |
---|
1485 | rhoshel = dp[5]; |
---|
1486 | num = dp[6]; |
---|
1487 | bkg = dp[7]; |
---|
1488 | |
---|
1489 | //calculate with a loop, two shells at a time |
---|
1490 | |
---|
1491 | ii=0; |
---|
1492 | fval=0; |
---|
1493 | |
---|
1494 | do { |
---|
1495 | ri = rcore + (DOUBLE)ii*ts + (DOUBLE)ii*tw; |
---|
1496 | voli = 4*pi/3*ri*ri*ri; |
---|
1497 | sldi = rhocore-rhoshel; |
---|
1498 | fval += voli*sldi*F_func(ri*x); |
---|
1499 | ri += ts; |
---|
1500 | voli = 4*pi/3*ri*ri*ri; |
---|
1501 | sldi = rhoshel-rhocore; |
---|
1502 | fval += voli*sldi*F_func(ri*x); |
---|
1503 | ii+=1; //do 2 layers at a time |
---|
1504 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1505 | |
---|
1506 | break; |
---|
1507 | default: // We can't handle this wave data type. |
---|
1508 | SetNaN64(&p->result); |
---|
1509 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1510 | } |
---|
1511 | |
---|
1512 | fval *= fval; //square it |
---|
1513 | fval /= voli; //normalize by the overall volume |
---|
1514 | fval *= scale*1e8; |
---|
1515 | fval += bkg; |
---|
1516 | |
---|
1517 | p->result= fval; |
---|
1518 | |
---|
1519 | return 0; |
---|
1520 | } |
---|
1521 | |
---|
1522 | /* |
---|
1523 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
1524 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1525 | //must always be a surfactant layer on the outside |
---|
1526 | // |
---|
1527 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1528 | // resolution smeared version gives he most appropriate view of the model |
---|
1529 | // |
---|
1530 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
1531 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
1532 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
1533 | // |
---|
1534 | Warning: |
---|
1535 | The call to WaveData() below returns a pointer to the middle |
---|
1536 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1537 | calculations could cause memory to move, you should copy the coefficient |
---|
1538 | values to local variables or an array before such operations. |
---|
1539 | */ |
---|
1540 | int |
---|
1541 | PolyMultiShellX(FitParamsPtr p) |
---|
1542 | { |
---|
1543 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
1544 | float *fp; // Pointer to single precision wave data. |
---|
1545 | DOUBLE x; |
---|
1546 | DOUBLE scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
1547 | int ii,minPairs,maxPairs,first; |
---|
1548 | DOUBLE fval,ri,pi; |
---|
1549 | DOUBLE avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
1550 | |
---|
1551 | if (p->waveHandle == NIL) { |
---|
1552 | SetNaN64(&p->result); |
---|
1553 | return NON_EXISTENT_WAVE; |
---|
1554 | } |
---|
1555 | |
---|
1556 | pi = 4.0*atan(1.0); |
---|
1557 | x= p->x; |
---|
1558 | |
---|
1559 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
1560 | case NT_FP32: |
---|
1561 | fp= WaveData(p->waveHandle); |
---|
1562 | scale = fp[0]; |
---|
1563 | avg = fp[1]; // average (total) outer radius |
---|
1564 | pd = fp[2]; |
---|
1565 | rcore = fp[3]; |
---|
1566 | ts = fp[4]; |
---|
1567 | tw = fp[5]; |
---|
1568 | rhocore = fp[6]; |
---|
1569 | rhoshel = fp[7]; |
---|
1570 | bkg = fp[8]; |
---|
1571 | |
---|
1572 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
1573 | |
---|
1574 | //max radius set to be 5 std deviations past mean |
---|
1575 | hi = avg + pd*avg*5.0; |
---|
1576 | lo = avg - pd*avg*5.0; |
---|
1577 | |
---|
1578 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
1579 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
1580 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
1581 | |
---|
1582 | ii=minPairs; |
---|
1583 | fval=0; |
---|
1584 | d1 = 0; |
---|
1585 | d2 = 0; |
---|
1586 | r1 = 0; |
---|
1587 | r2 = 0; |
---|
1588 | distr = 0; |
---|
1589 | first = 1; |
---|
1590 | do { |
---|
1591 | //make the current values old |
---|
1592 | r1 = r2; |
---|
1593 | d1 = d2; |
---|
1594 | |
---|
1595 | ri = (DOUBLE)ii*(ts+tw) - tw + rcore; |
---|
1596 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
1597 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
1598 | r2 = ri; |
---|
1599 | d2 = SchulzPoint(ri,avg,zz); |
---|
1600 | if( !first ) { |
---|
1601 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
1602 | } |
---|
1603 | ii+=1; |
---|
1604 | first = 0; |
---|
1605 | } while(ii<=maxPairs); |
---|
1606 | |
---|
1607 | |
---|
1608 | break; |
---|
1609 | case NT_FP64: |
---|
1610 | dp= WaveData(p->waveHandle); |
---|
1611 | scale = dp[0]; |
---|
1612 | avg = dp[1]; // average (total) outer radius |
---|
1613 | pd = dp[2]; |
---|
1614 | rcore = dp[3]; |
---|
1615 | ts = dp[4]; |
---|
1616 | tw = dp[5]; |
---|
1617 | rhocore = dp[6]; |
---|
1618 | rhoshel = dp[7]; |
---|
1619 | bkg = dp[8]; |
---|
1620 | |
---|
1621 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
1622 | |
---|
1623 | //max radius set to be 5 std deviations past mean |
---|
1624 | hi = avg + pd*avg*5.0; |
---|
1625 | lo = avg - pd*avg*5.0; |
---|
1626 | |
---|
1627 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
1628 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
1629 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
1630 | |
---|
1631 | ii=minPairs; |
---|
1632 | fval=0; |
---|
1633 | d1 = 0; |
---|
1634 | d2 = 0; |
---|
1635 | r1 = 0; |
---|
1636 | r2 = 0; |
---|
1637 | distr = 0; |
---|
1638 | first = 1; |
---|
1639 | do { |
---|
1640 | //make the current values old |
---|
1641 | r1 = r2; |
---|
1642 | d1 = d2; |
---|
1643 | |
---|
1644 | ri = (DOUBLE)ii*(ts+tw) - tw + rcore; |
---|
1645 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
1646 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
1647 | r2 = ri; |
---|
1648 | d2 = SchulzPoint(ri,avg,zz); |
---|
1649 | if( !first ) { |
---|
1650 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
1651 | } |
---|
1652 | ii+=1; |
---|
1653 | first = 0; |
---|
1654 | } while(ii<=maxPairs); |
---|
1655 | |
---|
1656 | break; |
---|
1657 | default: // We can't handle this wave data type. |
---|
1658 | SetNaN64(&p->result); |
---|
1659 | return REQUIRES_SP_OR_DP_WAVE; |
---|
1660 | } |
---|
1661 | |
---|
1662 | fval /= 4*pi/3*avg*avg*avg; //normalize by the overall volume |
---|
1663 | fval /= distr; |
---|
1664 | fval *= scale; |
---|
1665 | fval += bkg; |
---|
1666 | |
---|
1667 | p->result= fval; |
---|
1668 | |
---|
1669 | return 0; |
---|
1670 | } |
---|
1671 | |
---|
1672 | DOUBLE |
---|
1673 | MultiShellGuts(DOUBLE x,DOUBLE rcore,DOUBLE ts,DOUBLE tw,DOUBLE rhocore,DOUBLE rhoshel,int num) { |
---|
1674 | |
---|
1675 | DOUBLE ri,sldi,fval,voli; |
---|
1676 | int ii; |
---|
1677 | |
---|
1678 | ii=0; |
---|
1679 | fval=0; |
---|
1680 | |
---|
1681 | do { |
---|
1682 | ri = rcore + (DOUBLE)ii*ts + (DOUBLE)ii*tw; |
---|
1683 | voli = 4*pi/3*ri*ri*ri; |
---|
1684 | sldi = rhocore-rhoshel; |
---|
1685 | fval += voli*sldi*F_func(ri*x); |
---|
1686 | ri += ts; |
---|
1687 | voli = 4*pi/3*ri*ri*ri; |
---|
1688 | sldi = rhoshel-rhocore; |
---|
1689 | fval += voli*sldi*F_func(ri*x); |
---|
1690 | ii+=1; //do 2 layers at a time |
---|
1691 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1692 | |
---|
1693 | fval *= fval; |
---|
1694 | fval /= voli; |
---|
1695 | fval *= 1e8; |
---|
1696 | |
---|
1697 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
1698 | } |
---|
1699 | |
---|
1700 | static DOUBLE |
---|
1701 | SchulzPoint(DOUBLE x, DOUBLE avg, DOUBLE zz) { |
---|
1702 | |
---|
1703 | DOUBLE dr; |
---|
1704 | |
---|
1705 | dr = zz*log(x) - gammln(zz+1)+(zz+1)*log((zz+1)/avg)-(x/avg*(zz+1)); |
---|
1706 | return (exp(dr)); |
---|
1707 | } |
---|
1708 | |
---|
1709 | static DOUBLE |
---|
1710 | gammln(double xx) { |
---|
1711 | |
---|
1712 | double x,y,tmp,ser; |
---|
1713 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
1714 | 24.01409824083091,-1.231739572450155, |
---|
1715 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
1716 | int j; |
---|
1717 | |
---|
1718 | y=x=xx; |
---|
1719 | tmp=x+5.5; |
---|
1720 | tmp -= (x+0.5)*log(tmp); |
---|
1721 | ser=1.000000000190015; |
---|
1722 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
1723 | return -tmp+log(2.5066282746310005*ser/x); |
---|
1724 | } |
---|
1725 | |
---|
1726 | DOUBLE |
---|
1727 | F_func(double qr) { |
---|
1728 | return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
1729 | } |
---|
1730 | |
---|
1731 | |
---|
1732 | |
---|
1733 | #pragma XOP_RESET_STRUCT_PACKING // All structures are 2-byte-aligned. |
---|
1734 | |
---|
1735 | ///////////end of XOP |
---|
1736 | |
---|
1737 | |
---|