1 | /* TwoPhaseFit.c |
---|
2 | |
---|
3 | */ |
---|
4 | |
---|
5 | #pragma XOP_SET_STRUCT_PACKING // All structures are 2-byte-aligned. |
---|
6 | |
---|
7 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
8 | #include "SANSAnalysis.h" |
---|
9 | #include "TwoPhase.h" |
---|
10 | |
---|
11 | // scattering from the Teubner-Strey model for microemulsions - hardly needs to be an XOP... |
---|
12 | int |
---|
13 | TeubnerStreyModelX(FitParamsPtr p) |
---|
14 | { |
---|
15 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
16 | float *fp; // Pointer to single precision wave data. |
---|
17 | DOUBLE q; |
---|
18 | DOUBLE inten,q2,q4; //my local names |
---|
19 | |
---|
20 | if (p->waveHandle == NIL) { |
---|
21 | SetNaN64(&p->result); |
---|
22 | return NON_EXISTENT_WAVE; |
---|
23 | } |
---|
24 | |
---|
25 | q= p->x; |
---|
26 | q2 = q*q; |
---|
27 | q4 = q2*q2; |
---|
28 | |
---|
29 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
30 | case NT_FP32: |
---|
31 | fp= WaveData(p->waveHandle); |
---|
32 | // scale = fp[0]; |
---|
33 | // radius = fp[1]; |
---|
34 | // delrho = fp[2]; |
---|
35 | // bkg = fp[3]; |
---|
36 | |
---|
37 | inten = 1.0/(fp[0]+fp[1]*q2+fp[2]*q4); |
---|
38 | inten += fp[3]; |
---|
39 | |
---|
40 | break; |
---|
41 | case NT_FP64: |
---|
42 | dp= WaveData(p->waveHandle); |
---|
43 | |
---|
44 | inten = 1.0/(dp[0]+dp[1]*q2+dp[2]*q4); |
---|
45 | inten += dp[3]; |
---|
46 | |
---|
47 | break; |
---|
48 | default: // We can't handle this wave data type. |
---|
49 | SetNaN64(&p->result); |
---|
50 | return REQUIRES_SP_OR_DP_WAVE; |
---|
51 | } |
---|
52 | |
---|
53 | p->result= (inten); //scale, and add in the background |
---|
54 | return 0; |
---|
55 | } |
---|
56 | |
---|
57 | int |
---|
58 | Power_Law_ModelX(FitParamsPtr p) |
---|
59 | { |
---|
60 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
61 | float *fp; // Pointer to single precision wave data. |
---|
62 | DOUBLE qval; |
---|
63 | DOUBLE inten,A,m,bgd; //my local names |
---|
64 | |
---|
65 | if (p->waveHandle == NIL) { |
---|
66 | SetNaN64(&p->result); |
---|
67 | return NON_EXISTENT_WAVE; |
---|
68 | } |
---|
69 | |
---|
70 | qval= p->x; |
---|
71 | |
---|
72 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
73 | case NT_FP32: |
---|
74 | fp= WaveData(p->waveHandle); |
---|
75 | A = fp[0]; |
---|
76 | m = fp[1]; |
---|
77 | bgd = fp[2]; |
---|
78 | |
---|
79 | break; |
---|
80 | case NT_FP64: |
---|
81 | dp= WaveData(p->waveHandle); |
---|
82 | A = dp[0]; |
---|
83 | m = dp[1]; |
---|
84 | bgd = dp[2]; |
---|
85 | |
---|
86 | break; |
---|
87 | default: // We can't handle this wave data type. |
---|
88 | SetNaN64(&p->result); |
---|
89 | return REQUIRES_SP_OR_DP_WAVE; |
---|
90 | } |
---|
91 | |
---|
92 | inten = A*pow(qval,-m) + bgd; |
---|
93 | p->result= (inten); //scale, and add in the background |
---|
94 | return 0; |
---|
95 | } |
---|
96 | |
---|
97 | |
---|
98 | int |
---|
99 | Peak_Lorentz_ModelX(FitParamsPtr p) |
---|
100 | { |
---|
101 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
102 | float *fp; // Pointer to single precision wave data. |
---|
103 | DOUBLE qval; |
---|
104 | DOUBLE inten,I0, qpk, dq,bgd; //my local names |
---|
105 | |
---|
106 | if (p->waveHandle == NIL) { |
---|
107 | SetNaN64(&p->result); |
---|
108 | return NON_EXISTENT_WAVE; |
---|
109 | } |
---|
110 | |
---|
111 | qval= p->x; |
---|
112 | |
---|
113 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
114 | case NT_FP32: |
---|
115 | fp= WaveData(p->waveHandle); |
---|
116 | I0 = fp[0]; |
---|
117 | qpk = fp[1]; |
---|
118 | dq = fp[2]; |
---|
119 | bgd = fp[3]; |
---|
120 | |
---|
121 | break; |
---|
122 | case NT_FP64: |
---|
123 | dp= WaveData(p->waveHandle); |
---|
124 | I0 = dp[0]; |
---|
125 | qpk = dp[1]; |
---|
126 | dq = dp[2]; |
---|
127 | bgd = dp[3]; |
---|
128 | |
---|
129 | break; |
---|
130 | default: // We can't handle this wave data type. |
---|
131 | SetNaN64(&p->result); |
---|
132 | return REQUIRES_SP_OR_DP_WAVE; |
---|
133 | } |
---|
134 | |
---|
135 | inten = I0/(1.0 + pow( (qval-qpk)/dq,2) ) + bgd; |
---|
136 | |
---|
137 | p->result= (inten); //scale, and add in the background |
---|
138 | return 0; |
---|
139 | } |
---|
140 | |
---|
141 | int |
---|
142 | Peak_Gauss_ModelX(FitParamsPtr p) |
---|
143 | { |
---|
144 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
145 | float *fp; // Pointer to single precision wave data. |
---|
146 | DOUBLE qval; |
---|
147 | DOUBLE inten,I0, qpk, dq,bgd; //my local names |
---|
148 | |
---|
149 | if (p->waveHandle == NIL) { |
---|
150 | SetNaN64(&p->result); |
---|
151 | return NON_EXISTENT_WAVE; |
---|
152 | } |
---|
153 | |
---|
154 | qval= p->x; |
---|
155 | |
---|
156 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
157 | case NT_FP32: |
---|
158 | fp= WaveData(p->waveHandle); |
---|
159 | I0 = fp[0]; |
---|
160 | qpk = fp[1]; |
---|
161 | dq = fp[2]; |
---|
162 | bgd = fp[3]; |
---|
163 | |
---|
164 | break; |
---|
165 | case NT_FP64: |
---|
166 | dp= WaveData(p->waveHandle); |
---|
167 | I0 = dp[0]; |
---|
168 | qpk = dp[1]; |
---|
169 | dq = dp[2]; |
---|
170 | bgd = dp[3]; |
---|
171 | |
---|
172 | break; |
---|
173 | default: // We can't handle this wave data type. |
---|
174 | SetNaN64(&p->result); |
---|
175 | return REQUIRES_SP_OR_DP_WAVE; |
---|
176 | } |
---|
177 | |
---|
178 | inten = I0*exp(-0.5*pow((qval-qpk)/dq,2))+ bgd; |
---|
179 | |
---|
180 | p->result= (inten); //scale, and add in the background |
---|
181 | return 0; |
---|
182 | } |
---|
183 | |
---|
184 | int |
---|
185 | Lorentz_ModelX(FitParamsPtr p) |
---|
186 | { |
---|
187 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
188 | float *fp; // Pointer to single precision wave data. |
---|
189 | DOUBLE qval; |
---|
190 | DOUBLE inten,I0, L,bgd; //my local names |
---|
191 | |
---|
192 | if (p->waveHandle == NIL) { |
---|
193 | SetNaN64(&p->result); |
---|
194 | return NON_EXISTENT_WAVE; |
---|
195 | } |
---|
196 | |
---|
197 | qval= p->x; |
---|
198 | |
---|
199 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
200 | case NT_FP32: |
---|
201 | fp= WaveData(p->waveHandle); |
---|
202 | I0 = fp[0]; |
---|
203 | L = fp[1]; |
---|
204 | bgd = fp[2]; |
---|
205 | |
---|
206 | break; |
---|
207 | case NT_FP64: |
---|
208 | dp= WaveData(p->waveHandle); |
---|
209 | I0 = dp[0]; |
---|
210 | L = dp[1]; |
---|
211 | bgd = dp[2]; |
---|
212 | |
---|
213 | break; |
---|
214 | default: // We can't handle this wave data type. |
---|
215 | SetNaN64(&p->result); |
---|
216 | return REQUIRES_SP_OR_DP_WAVE; |
---|
217 | } |
---|
218 | |
---|
219 | inten = I0/(1.0 + (qval*L)*(qval*L)) + bgd; |
---|
220 | |
---|
221 | p->result= (inten); //scale, and add in the background |
---|
222 | return 0; |
---|
223 | } |
---|
224 | |
---|
225 | int |
---|
226 | FractalX(FitParamsPtr p) |
---|
227 | { |
---|
228 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
229 | float *fp; // Pointer to single precision wave data. |
---|
230 | DOUBLE x,pi; |
---|
231 | DOUBLE r0,Df,corr,phi,sldp,sldm,bkg; |
---|
232 | DOUBLE pq,sq,ans; |
---|
233 | |
---|
234 | if (p->waveHandle == NIL) { |
---|
235 | SetNaN64(&p->result); |
---|
236 | return NON_EXISTENT_WAVE; |
---|
237 | } |
---|
238 | |
---|
239 | pi = 4.0*atan(1.0); |
---|
240 | x= p->x; |
---|
241 | |
---|
242 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
243 | case NT_FP32: |
---|
244 | fp= WaveData(p->waveHandle); |
---|
245 | phi = fp[0]; // volume fraction of building block spheres... |
---|
246 | r0 = fp[1]; // radius of building block |
---|
247 | Df = fp[2]; // fractal dimension |
---|
248 | corr = fp[3]; // correlation length of fractal-like aggregates |
---|
249 | sldp = fp[4]; // SLD of building block |
---|
250 | sldm = fp[5]; // SLD of matrix or solution |
---|
251 | bkg = fp[6]; // flat background |
---|
252 | |
---|
253 | break; |
---|
254 | case NT_FP64: |
---|
255 | dp= WaveData(p->waveHandle); |
---|
256 | phi = dp[0]; // volume fraction of building block spheres... |
---|
257 | r0 = dp[1]; // radius of building block |
---|
258 | Df = dp[2]; // fractal dimension |
---|
259 | corr = dp[3]; // correlation length of fractal-like aggregates |
---|
260 | sldp = dp[4]; // SLD of building block |
---|
261 | sldm = dp[5]; // SLD of matrix or solution |
---|
262 | bkg = dp[6]; // flat background |
---|
263 | |
---|
264 | break; |
---|
265 | default: // We can't handle this wave data type. |
---|
266 | SetNaN64(&p->result); |
---|
267 | return REQUIRES_SP_OR_DP_WAVE; |
---|
268 | } |
---|
269 | |
---|
270 | //calculate P(q) for the spherical subunits, units cm-1 sr-1 |
---|
271 | pq = 1.0e8*phi*4.0/3.0*pi*r0*r0*r0*(sldp-sldm)*(sldp-sldm)*pow((3*(sin(x*r0) - x*r0*cos(x*r0))/pow((x*r0),3)),2); |
---|
272 | |
---|
273 | //calculate S(q) |
---|
274 | sq = Df*exp(gammln(Df-1.0))*sin((Df-1.0)*atan(x*corr)); |
---|
275 | sq /= pow((x*r0),Df) * pow((1.0 + 1.0/(x*corr)/(x*corr)),((Df-1.0)/2.0)); |
---|
276 | sq += 1.0; |
---|
277 | //combine and return |
---|
278 | ans = pq*sq + bkg; |
---|
279 | |
---|
280 | p->result= (ans); //scale, and add in the background |
---|
281 | return 0; |
---|
282 | } |
---|
283 | |
---|
284 | int |
---|
285 | DAB_ModelX(FitParamsPtr p) |
---|
286 | { |
---|
287 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
288 | float *fp; // Pointer to single precision wave data. |
---|
289 | DOUBLE qval,inten; |
---|
290 | DOUBLE Izero, range, incoh; |
---|
291 | |
---|
292 | if (p->waveHandle == NIL) { |
---|
293 | SetNaN64(&p->result); |
---|
294 | return NON_EXISTENT_WAVE; |
---|
295 | } |
---|
296 | |
---|
297 | qval= p->x; |
---|
298 | |
---|
299 | |
---|
300 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
301 | case NT_FP32: |
---|
302 | fp= WaveData(p->waveHandle); |
---|
303 | Izero = fp[0]; |
---|
304 | range = fp[1]; |
---|
305 | incoh = fp[2]; |
---|
306 | |
---|
307 | break; |
---|
308 | case NT_FP64: |
---|
309 | dp= WaveData(p->waveHandle); |
---|
310 | Izero = dp[0]; |
---|
311 | range = dp[1]; |
---|
312 | incoh = dp[2]; |
---|
313 | |
---|
314 | break; |
---|
315 | default: // We can't handle this wave data type. |
---|
316 | SetNaN64(&p->result); |
---|
317 | return REQUIRES_SP_OR_DP_WAVE; |
---|
318 | } |
---|
319 | |
---|
320 | inten = Izero/pow((1.0 + (qval*range)*(qval*range)),2) + incoh; |
---|
321 | |
---|
322 | p->result= (inten); //scale, and add in the background |
---|
323 | return 0; |
---|
324 | } |
---|
325 | |
---|
326 | // G. Beaucage's Unified Model (1-4 levels) |
---|
327 | // |
---|
328 | int |
---|
329 | OneLevelX(FitParamsPtr p) |
---|
330 | { |
---|
331 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
332 | float *fp; // Pointer to single precision wave data. |
---|
333 | DOUBLE x,ans,erf1; |
---|
334 | DOUBLE G1,Rg1,B1,Pow1,bkg,scale; |
---|
335 | |
---|
336 | if (p->waveHandle == NIL) { |
---|
337 | SetNaN64(&p->result); |
---|
338 | return NON_EXISTENT_WAVE; |
---|
339 | } |
---|
340 | |
---|
341 | x= p->x; |
---|
342 | |
---|
343 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
344 | case NT_FP32: |
---|
345 | fp= WaveData(p->waveHandle); |
---|
346 | scale = fp[0]; |
---|
347 | G1 = fp[1]; |
---|
348 | Rg1 = fp[2]; |
---|
349 | B1 = fp[3]; |
---|
350 | Pow1 = fp[4]; |
---|
351 | bkg = fp[5]; |
---|
352 | |
---|
353 | |
---|
354 | break; |
---|
355 | case NT_FP64: |
---|
356 | dp= WaveData(p->waveHandle); |
---|
357 | scale = dp[0]; |
---|
358 | G1 = dp[1]; |
---|
359 | Rg1 = dp[2]; |
---|
360 | B1 = dp[3]; |
---|
361 | Pow1 = dp[4]; |
---|
362 | bkg = dp[5]; |
---|
363 | |
---|
364 | |
---|
365 | break; |
---|
366 | default: // We can't handle this wave data type. |
---|
367 | SetNaN64(&p->result); |
---|
368 | return REQUIRES_SP_OR_DP_WAVE; |
---|
369 | } |
---|
370 | |
---|
371 | erf1 = erf( (x*Rg1/sqrt(6.0))); |
---|
372 | |
---|
373 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
374 | ans += B1*pow((erf1*erf1*erf1/x),Pow1); |
---|
375 | |
---|
376 | ans *= scale; |
---|
377 | ans += bkg; |
---|
378 | |
---|
379 | p->result= ans; //scale, and add in the background |
---|
380 | return 0; |
---|
381 | } |
---|
382 | |
---|
383 | // G. Beaucage's Unified Model (1-4 levels) |
---|
384 | // |
---|
385 | int |
---|
386 | TwoLevelX(FitParamsPtr p) |
---|
387 | { |
---|
388 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
389 | float *fp; // Pointer to single precision wave data. |
---|
390 | DOUBLE x; |
---|
391 | DOUBLE ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
392 | DOUBLE erf1,erf2,scale; |
---|
393 | |
---|
394 | if (p->waveHandle == NIL) { |
---|
395 | SetNaN64(&p->result); |
---|
396 | return NON_EXISTENT_WAVE; |
---|
397 | } |
---|
398 | |
---|
399 | x= p->x; |
---|
400 | |
---|
401 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
402 | case NT_FP32: |
---|
403 | fp= WaveData(p->waveHandle); |
---|
404 | scale = fp[0]; |
---|
405 | G1 = fp[1]; //equivalent to I(0) |
---|
406 | Rg1 = fp[2]; |
---|
407 | B1 = fp[3]; |
---|
408 | Pow1 = fp[4]; |
---|
409 | G2 = fp[5]; |
---|
410 | Rg2 = fp[6]; |
---|
411 | B2 = fp[7]; |
---|
412 | Pow2 = fp[8]; |
---|
413 | bkg = fp[9]; |
---|
414 | |
---|
415 | break; |
---|
416 | case NT_FP64: |
---|
417 | dp= WaveData(p->waveHandle); |
---|
418 | scale = dp[0]; |
---|
419 | G1 = dp[1]; //equivalent to I(0) |
---|
420 | Rg1 = dp[2]; |
---|
421 | B1 = dp[3]; |
---|
422 | Pow1 = dp[4]; |
---|
423 | G2 = dp[5]; |
---|
424 | Rg2 = dp[6]; |
---|
425 | B2 = dp[7]; |
---|
426 | Pow2 = dp[8]; |
---|
427 | bkg = dp[9]; |
---|
428 | |
---|
429 | break; |
---|
430 | default: // We can't handle this wave data type. |
---|
431 | SetNaN64(&p->result); |
---|
432 | return REQUIRES_SP_OR_DP_WAVE; |
---|
433 | } |
---|
434 | |
---|
435 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
436 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
437 | //Print erf1 |
---|
438 | |
---|
439 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
440 | ans += B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
441 | ans += G2*exp(-x*x*Rg2*Rg2/3.0); |
---|
442 | ans += B2*pow((erf2*erf2*erf2/x),Pow2); |
---|
443 | |
---|
444 | ans *= scale; |
---|
445 | ans += bkg; |
---|
446 | |
---|
447 | p->result= ans; //scale, and add in the background |
---|
448 | return 0; |
---|
449 | } |
---|
450 | |
---|
451 | // G. Beaucage's Unified Model (1-4 levels) |
---|
452 | // |
---|
453 | int |
---|
454 | ThreeLevelX(FitParamsPtr p) |
---|
455 | { |
---|
456 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
457 | float *fp; // Pointer to single precision wave data. |
---|
458 | DOUBLE x; |
---|
459 | DOUBLE ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
460 | DOUBLE G3,Rg3,B3,Pow3,erf3; |
---|
461 | DOUBLE erf1,erf2,scale; |
---|
462 | |
---|
463 | if (p->waveHandle == NIL) { |
---|
464 | SetNaN64(&p->result); |
---|
465 | return NON_EXISTENT_WAVE; |
---|
466 | } |
---|
467 | |
---|
468 | x= p->x; |
---|
469 | |
---|
470 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
471 | case NT_FP32: |
---|
472 | fp= WaveData(p->waveHandle); |
---|
473 | scale = fp[0]; |
---|
474 | G1 = fp[1]; //equivalent to I(0) |
---|
475 | Rg1 = fp[2]; |
---|
476 | B1 = fp[3]; |
---|
477 | Pow1 = fp[4]; |
---|
478 | G2 = fp[5]; |
---|
479 | Rg2 = fp[6]; |
---|
480 | B2 = fp[7]; |
---|
481 | Pow2 = fp[8]; |
---|
482 | G3 = fp[9]; |
---|
483 | Rg3 = fp[10]; |
---|
484 | B3 = fp[11]; |
---|
485 | Pow3 = fp[12]; |
---|
486 | bkg = fp[13]; |
---|
487 | |
---|
488 | break; |
---|
489 | case NT_FP64: |
---|
490 | dp= WaveData(p->waveHandle); |
---|
491 | scale = dp[0]; |
---|
492 | G1 = dp[1]; //equivalent to I(0) |
---|
493 | Rg1 = dp[2]; |
---|
494 | B1 = dp[3]; |
---|
495 | Pow1 = dp[4]; |
---|
496 | G2 = dp[5]; |
---|
497 | Rg2 = dp[6]; |
---|
498 | B2 = dp[7]; |
---|
499 | Pow2 = dp[8]; |
---|
500 | G3 = dp[9]; |
---|
501 | Rg3 = dp[10]; |
---|
502 | B3 = dp[11]; |
---|
503 | Pow3 = dp[12]; |
---|
504 | bkg = dp[13]; |
---|
505 | |
---|
506 | break; |
---|
507 | default: // We can't handle this wave data type. |
---|
508 | SetNaN64(&p->result); |
---|
509 | return REQUIRES_SP_OR_DP_WAVE; |
---|
510 | } |
---|
511 | |
---|
512 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
513 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
514 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
515 | //Print erf1 |
---|
516 | |
---|
517 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
518 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
519 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*pow((erf3*erf3*erf3/x),Pow3); |
---|
520 | |
---|
521 | ans *= scale; |
---|
522 | ans += bkg; |
---|
523 | |
---|
524 | p->result= ans; //scale, and add in the background |
---|
525 | return 0; |
---|
526 | } |
---|
527 | |
---|
528 | // G. Beaucage's Unified Model (1-4 levels) |
---|
529 | // |
---|
530 | int |
---|
531 | FourLevelX(FitParamsPtr p) |
---|
532 | { |
---|
533 | DOUBLE *dp; // Pointer to double precision wave data. |
---|
534 | float *fp; // Pointer to single precision wave data. |
---|
535 | DOUBLE x; |
---|
536 | DOUBLE ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
537 | DOUBLE G3,Rg3,B3,Pow3,erf3; |
---|
538 | DOUBLE G4,Rg4,B4,Pow4,erf4; |
---|
539 | DOUBLE erf1,erf2,scale; |
---|
540 | |
---|
541 | if (p->waveHandle == NIL) { |
---|
542 | SetNaN64(&p->result); |
---|
543 | return NON_EXISTENT_WAVE; |
---|
544 | } |
---|
545 | |
---|
546 | x= p->x; |
---|
547 | |
---|
548 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
549 | case NT_FP32: |
---|
550 | fp= WaveData(p->waveHandle); |
---|
551 | scale = fp[0]; |
---|
552 | G1 = fp[1]; //equivalent to I(0) |
---|
553 | Rg1 = fp[2]; |
---|
554 | B1 = fp[3]; |
---|
555 | Pow1 = fp[4]; |
---|
556 | G2 = fp[5]; |
---|
557 | Rg2 = fp[6]; |
---|
558 | B2 = fp[7]; |
---|
559 | Pow2 = fp[8]; |
---|
560 | G3 = fp[9]; |
---|
561 | Rg3 = fp[10]; |
---|
562 | B3 = fp[11]; |
---|
563 | Pow3 = fp[12]; |
---|
564 | G4 = fp[13]; |
---|
565 | Rg4 = fp[14]; |
---|
566 | B4 = fp[15]; |
---|
567 | Pow4 = fp[16]; |
---|
568 | bkg = fp[17]; |
---|
569 | |
---|
570 | break; |
---|
571 | case NT_FP64: |
---|
572 | dp= WaveData(p->waveHandle); |
---|
573 | scale = dp[0]; |
---|
574 | G1 = dp[1]; //equivalent to I(0) |
---|
575 | Rg1 = dp[2]; |
---|
576 | B1 = dp[3]; |
---|
577 | Pow1 = dp[4]; |
---|
578 | G2 = dp[5]; |
---|
579 | Rg2 = dp[6]; |
---|
580 | B2 = dp[7]; |
---|
581 | Pow2 = dp[8]; |
---|
582 | G3 = dp[9]; |
---|
583 | Rg3 = dp[10]; |
---|
584 | B3 = dp[11]; |
---|
585 | Pow3 = dp[12]; |
---|
586 | G4 = dp[13]; |
---|
587 | Rg4 = dp[14]; |
---|
588 | B4 = dp[15]; |
---|
589 | Pow4 = dp[16]; |
---|
590 | bkg = dp[17]; |
---|
591 | |
---|
592 | break; |
---|
593 | default: // We can't handle this wave data type. |
---|
594 | SetNaN64(&p->result); |
---|
595 | return REQUIRES_SP_OR_DP_WAVE; |
---|
596 | } |
---|
597 | |
---|
598 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
599 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
600 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
601 | erf4 = erf( (x*Rg4/sqrt(6.0)) ); |
---|
602 | |
---|
603 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
604 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
605 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*exp(-x*x*Rg4*Rg4/3.0)*pow((erf3*erf3*erf3/x),Pow3); |
---|
606 | ans += G4*exp(-x*x*Rg4*Rg4/3.0) + B4*pow((erf4*erf4*erf4/x),Pow4); |
---|
607 | |
---|
608 | ans *= scale; |
---|
609 | ans += bkg; |
---|
610 | |
---|
611 | p->result= ans; //scale, and add in the background |
---|
612 | return 0; |
---|
613 | } |
---|
614 | |
---|
615 | |
---|
616 | static DOUBLE |
---|
617 | gammln(double xx) { |
---|
618 | |
---|
619 | double x,y,tmp,ser; |
---|
620 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
621 | 24.01409824083091,-1.231739572450155, |
---|
622 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
623 | int j; |
---|
624 | |
---|
625 | y=x=xx; |
---|
626 | tmp=x+5.5; |
---|
627 | tmp -= (x+0.5)*log(tmp); |
---|
628 | ser=1.000000000190015; |
---|
629 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
630 | return -tmp+log(2.5066282746310005*ser/x); |
---|
631 | } |
---|
632 | |
---|
633 | |
---|
634 | |
---|
635 | #pragma XOP_RESET_STRUCT_PACKING // All structures are 2-byte-aligned. |
---|
636 | |
---|
637 | ///////////end of XOP |
---|
638 | |
---|
639 | |
---|