1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | |
---|
3 | Proc PlotHayterPenfoldMSA(num,qmin,qmax) |
---|
4 | Variable num=128, qmin=.001, qmax=.3 |
---|
5 | Prompt num "Enter number of data points for model: " |
---|
6 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
7 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
8 | |
---|
9 | // Set up data folder for global variables |
---|
10 | string SaveDF=GetDataFolder(1) |
---|
11 | if (DataFolderExists("root:HayPenMSA")) |
---|
12 | SetDataFolder root:HayPenMSA |
---|
13 | else |
---|
14 | NewDataFolder/S root:HayPenMSA |
---|
15 | endif |
---|
16 | //variable/G a,b,c,f,eta,gek,ak,u,v,gamk,seta,sgek,sak,scal,g1, fval, evar |
---|
17 | Make/O/D/N=17 gMSAWave |
---|
18 | SetDataFolder SaveDF |
---|
19 | // |
---|
20 | make/o/d/n=(num) xwave_hpmsa, ywave_hpmsa, xdiamwave_hpmsa |
---|
21 | xwave_hpmsa = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
22 | make/o/d coef_hpmsa = {41.5,19,0.0192,298,0.0,78} //**** numerical vals, # of variables |
---|
23 | make/o/t parameters_hpmsa = {"Diameter (A)","Charge","Volume Fraction","Temperature(K)","monovalent salt conc. (M)","dielectric constant of solvent"} |
---|
24 | Edit parameters_hpmsa,coef_hpmsa |
---|
25 | ywave_hpmsa := HayterPenfoldMSA(coef_hpmsa,xwave_hpmsa) |
---|
26 | xdiamwave_hpmsa:=xwave_hpmsa*coef_hpmsa[0] |
---|
27 | //Display ywave_hpmsa vs xdiamwave_hpmsa |
---|
28 | Display ywave_hpmsa vs xwave_hpmsa |
---|
29 | ModifyGraph log=0,marker=29,msize=2,mode=4,grid=1 //**** log=0 if linear scale desired |
---|
30 | Label bottom "q (\\S-1\\M)" |
---|
31 | Label left "Structure Factor" |
---|
32 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
33 | End |
---|
34 | |
---|
35 | ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
36 | // |
---|
37 | // Wrapper for Hayter Penfold MSA routines: |
---|
38 | // SETS UP THE PARAMETERS FOR THE |
---|
39 | // CALCULATION OF THE STRUCTURE FACTOR ,S(Q) |
---|
40 | // GIVEN THE THREE REQUIRED PARAMETERS VALK, GAMMA, ETA. |
---|
41 | // |
---|
42 | // *** NOTE **** THIS CALCULATION REQUIRES THAT THE NUMBER OF |
---|
43 | // Q-VALUES AT WHICH THE S(Q) IS CALCULATED BE |
---|
44 | // A POWER OF 2 |
---|
45 | // |
---|
46 | |
---|
47 | Function HayterPenfoldMSA(w,x) : FitFunc |
---|
48 | wave w |
---|
49 | variable x |
---|
50 | |
---|
51 | // variable timer=StartMSTimer |
---|
52 | |
---|
53 | variable Elcharge=1.602189e-19 // electron charge in Coulombs (C) |
---|
54 | variable kB=1.380662e-23 // Boltzman constant in J/K |
---|
55 | variable FrSpPerm=8.85418782E-12 //Permittivity of free space in C^2/(N m^2) |
---|
56 | |
---|
57 | variable SofQ, QQ, Qdiam, gammaek, Vp, csalt, ss |
---|
58 | variable VolFrac, SIdiam, diam, Kappa, cs, IonSt |
---|
59 | variable dialec, Perm, Beta, Temp, zz, charge, ierr |
---|
60 | |
---|
61 | diam=w[0] //in (not SI .. should force people to think in nm!!!) |
---|
62 | zz = w[1] //# of charges |
---|
63 | VolFrac=w[2] |
---|
64 | QQ=x //in ^-1 (not SI .. should force people to think in nm^-1!!!) |
---|
65 | Temp=w[3] //in degrees Kelvin |
---|
66 | csalt=w[4] //in molarity |
---|
67 | dialec=w[5] // unitless |
---|
68 | |
---|
69 | // Set up data folder for global variables in the calling macro |
---|
70 | // string SaveDF=GetDataFolder(1) |
---|
71 | // if (DataFolderExists("root:HayPenMSA")) |
---|
72 | // SetDataFolder root:HayPenMSA |
---|
73 | // else |
---|
74 | // NewDataFolder/S root:HayPenMSA |
---|
75 | // endif |
---|
76 | // variable/G a,b,c,f,eta,gek,ak,u,v,gamk,seta,sgek,sak,scal,g1, fval, evar |
---|
77 | // SetDataFolder SaveDF |
---|
78 | |
---|
79 | //need NVAR references to ALL global variables in HayPenMSA subfolder |
---|
80 | // NVAR a=root:HayPenMSA:a |
---|
81 | // NVAR b=root:HayPenMSA:b |
---|
82 | // NVAR c=root:HayPenMSA:c |
---|
83 | // NVAR f=root:HayPenMSA:f |
---|
84 | // NVAR eta=root:HayPenMSA:eta |
---|
85 | // NVAR gek=root:HayPenMSA:gek |
---|
86 | // NVAR ak=root:HayPenMSA:ak |
---|
87 | // NVAR u=root:HayPenMSA:u |
---|
88 | // NVAR v=root:HayPenMSA:v |
---|
89 | // NVAR gamk=root:HayPenMSA:gamk |
---|
90 | // NVAR seta=root:HayPenMSA:seta |
---|
91 | // NVAR sgek=root:HayPenMSA:sgek |
---|
92 | // NVAR sak=root:HayPenMSA:sak |
---|
93 | // NVAR scal=root:HayPenMSA:scal |
---|
94 | // NVAR g1=root:HayPenMSA:g1 |
---|
95 | // NVAR fval=root:HayPenMSA:fval |
---|
96 | // NVAR evar=root:HayPenMSA:evar |
---|
97 | |
---|
98 | // NVAR a=root:HayPenMSA:a = gMSAWave[0] |
---|
99 | // NVAR b=root:HayPenMSA:b = gMSAWave[1] |
---|
100 | // NVAR c=root:HayPenMSA:c = gMSAWave[2] |
---|
101 | // NVAR f=root:HayPenMSA:f = gMSAWave[3] |
---|
102 | // NVAR eta=root:HayPenMSA:eta = gMSAWave[4] |
---|
103 | // NVAR gek=root:HayPenMSA:gek = gMSAWave[5] |
---|
104 | // NVAR ak=root:HayPenMSA:ak = gMSAWave[6] |
---|
105 | // NVAR u=root:HayPenMSA:u = gMSAWave[7] |
---|
106 | // NVAR v=root:HayPenMSA:v = gMSAWave[8] |
---|
107 | // NVAR gamk=root:HayPenMSA:gamk = gMSAWave[9] |
---|
108 | // NVAR seta=root:HayPenMSA:seta = gMSAWave[10] |
---|
109 | // NVAR sgek=root:HayPenMSA:sgek = gMSAWave[11] |
---|
110 | // NVAR sak=root:HayPenMSA:sak = gMSAWave[12] |
---|
111 | // NVAR scal=root:HayPenMSA:scal = gMSAWave[13] |
---|
112 | // NVAR g1=root:HayPenMSA:g1 = gMSAWave[14] |
---|
113 | // NVAR fval=root:HayPenMSA:fval = gMSAWave[15] |
---|
114 | // NVAR evar=root:HayPenMSA:evar = gMSAWave[16] |
---|
115 | //use wave instead |
---|
116 | WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
117 | |
---|
118 | |
---|
119 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
120 | //////////////////////////// convert to USEFUL inputs in SI units // |
---|
121 | //////////////////////////// NOTE: easiest to do EVERYTHING in SI units // |
---|
122 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
123 | Beta=1/(kB*Temp) // in Joules^-1 |
---|
124 | Perm=dialec*FrSpPerm //in C^2/(N m^2) |
---|
125 | charge=zz*Elcharge //in Coulomb (C) |
---|
126 | SIdiam = diam*1E-10 //in m |
---|
127 | Vp=4*pi/3*(SIdiam/2)^3 //in m^3 |
---|
128 | cs=csalt*6.022E23*1E3 //# salt molecules/m^3 |
---|
129 | |
---|
130 | // Compute the derived values of : |
---|
131 | // Ionic strength IonSt (in C^2/m^3) |
---|
132 | // Kappa (Debye-Huckel screening length in m) |
---|
133 | // and gamma Exp(-k) |
---|
134 | IonSt=0.5 * Elcharge^2*(zz*VolFrac/Vp+2*cs) |
---|
135 | Kappa=sqrt(2*Beta*IonSt/Perm) //Kappa calc from Ionic strength |
---|
136 | // Kappa=2/SIdiam // Use to compare with HP paper |
---|
137 | gMSAWave[5]=Beta*charge^2/(pi*Perm*SIdiam*(2+Kappa*SIdiam)^2) |
---|
138 | |
---|
139 | // Finally set up dimensionless parameters |
---|
140 | Qdiam=QQ*diam |
---|
141 | gMSAWave[6] = Kappa*SIdiam |
---|
142 | gMSAWave[4] = VolFrac |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | // *************** now go to John Hayter and Jeff Penfold setup routine************ |
---|
147 | |
---|
148 | |
---|
149 | // *** ALL FURTHER PROGRAMS COMMENTS ARE FROM J. HAYTER |
---|
150 | // EXCEPT WHERE INDICATED ^* |
---|
151 | // |
---|
152 | // |
---|
153 | // ROUTINE TO CALCULATE S(Q*SIG) FOR A SCREENED COULOMB |
---|
154 | // POTENTIAL BETWEEN FINITE PARTICLES OF DIAMETER 'SIG' |
---|
155 | // AT ANY VOLUME FRACTION. THIS ROUTINE IS MUCH MORE POWER- |
---|
156 | // FUL THAN "SQHP" AND SHOULD BE USED TO REPLACE THE LATTER |
---|
157 | // IN EXISTING PROGRAMS. NOTE THAT THE COMMON AREA IS |
---|
158 | // CHANGED; IN PARTICULAR THE POTENTIAL IS PASSED |
---|
159 | // DIRECTLY AS 'GEK' = GAMMA*EXP(-K) IN THE PRESENT ROUTINE. |
---|
160 | // |
---|
161 | // JOHN B. HAYTER |
---|
162 | // |
---|
163 | // ***** THIS VERSION ENTERED ON 5/30/85 BY JOHN F. BILLMAN |
---|
164 | // |
---|
165 | // CALLING SEQUENCE: |
---|
166 | // |
---|
167 | // CALL SQHPA(QQ,SQ,NPT,IERR) |
---|
168 | // |
---|
169 | // QQ: ARRAY OF DIMENSION NPT CONTAINING THE VALUES |
---|
170 | // OF Q*SIG AT WHICH S(Q*SIG) WILL BE CALCULATED. |
---|
171 | // SQ: ARRAY OF DIMENSION NPT INTO WHICH THE VALUES OF |
---|
172 | // S(Q*SIG) WILL BE RETURNED |
---|
173 | // NPT: NUMBER OF VALUES OF Q*SIG |
---|
174 | // |
---|
175 | // IERR > 0: NORMAL EXIT; IERR=NUMBER OF ITERATIONS |
---|
176 | // -1: NEWTON ITERATION NON-CONVERGENT IN "SQCOEF" |
---|
177 | // -2: NEWTON ITERATION NON-CONVERGENT IN "SQFUN" |
---|
178 | // -3: CANNOT RESCALE TO G(1+) > 0. |
---|
179 | // |
---|
180 | // ALL OTHER PARAMETERS ARE TRANSMITTED THROUGH A SINGLE |
---|
181 | // NAMED COMMON AREA: |
---|
182 | // |
---|
183 | // REAL*8 a,b,//,f |
---|
184 | // COMMON /SQHPB/ ETA,GEK,AK,A,B,C,F,U,V,GAMK,SETA,SGEK,SAK,SCAL,G1 |
---|
185 | // |
---|
186 | // ON ENTRY: |
---|
187 | // |
---|
188 | // ETA: VOLUME FRACTION |
---|
189 | // GEK: THE CONTACT POTENTIAL GAMMA*EXP(-K) |
---|
190 | // AK: THE DIMENSIONLESS SCREENING CONSTANT |
---|
191 | // K=KAPPA*SIG WHERE KAPPA IS THE INVERSE SCREENING |
---|
192 | // LENGTH AND SIG IS THE PARTICLE DIAMETER |
---|
193 | // |
---|
194 | // ON EXIT: |
---|
195 | // |
---|
196 | // GAMK IS THE COUPLING: 2*GAMMA*SS*EXP(-K/SS), SS=ETA^(1/3). |
---|
197 | // SETA,SGEK AND SAK ARE THE RESCALED INPUT PARAMETERS. |
---|
198 | // SCAL IS THE RESCALING FACTOR: (ETA/SETA)^(1/3). |
---|
199 | // G1=G(1+), THE CONTACT VALUE OF G(R/SIG). |
---|
200 | // A.B,C,F,U,V ARE THE CONSTANTS APPEARING IN THE ANALYTIC |
---|
201 | // SOLUTION OF THE MSA [HAYTER-PENFOLD; MOL. PHYS. 42: 109 (1981) |
---|
202 | // |
---|
203 | // NOTES: |
---|
204 | // |
---|
205 | // (A) AFTER THE FIRST CALL TO SQHPA, S(Q*SIG) MAY BE EVALUATED |
---|
206 | // AT OTHER Q*SIG VALUES BY REDEFINING THE ARRAY QQ AND CALLING |
---|
207 | // "SQHCAL" DIRECTLY FROM THE MAIN PROGRAM. |
---|
208 | // |
---|
209 | // (B) THE RESULTING S(Q*SIG) MAY BE TRANSFORMED TO G(SS/SIG) |
---|
210 | // BY USING THE ROUTINE "TROGS" |
---|
211 | // |
---|
212 | // (C) NO ERROR CHECKING OF INPUT PARAMETERS IS PERFORMED; |
---|
213 | // IT IS THE RESPONSIBILITY OF THE CALLING PROGRAM TO |
---|
214 | // VERIFY VALIDITY. |
---|
215 | // |
---|
216 | // SUBROUTINES CALLED BY SQHPA: |
---|
217 | // |
---|
218 | // (1) SQCOEF: RESCALES THE PROBLEM AND CALCULATES THE |
---|
219 | // APPROPRIATE COEFFICIENTS FOR "SQHCAL" |
---|
220 | // |
---|
221 | // (2) SQFUN: CALCULATES VARIOUS VALUES FOR "SQCOEF" |
---|
222 | // |
---|
223 | // (3) SQHCAL: CALCULATES H-P S(Q*SIG) GIVEN IN A,B,C,F |
---|
224 | // |
---|
225 | |
---|
226 | |
---|
227 | |
---|
228 | |
---|
229 | //Function sqhpa(qq) {this is where Hayter-Penfold program began} |
---|
230 | |
---|
231 | |
---|
232 | // FIRST CALCULATE COUPLING |
---|
233 | |
---|
234 | ss=gMSAWave[4]^(1.0/3.0) |
---|
235 | gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss) |
---|
236 | |
---|
237 | // CALCULATE COEFFICIENTS, CHECK ALL IS WELL |
---|
238 | // AND IF SO CALCULATE S(Q*SIG) |
---|
239 | |
---|
240 | ierr=0 |
---|
241 | ierr=sqcoef(ierr) |
---|
242 | if (ierr>=0) |
---|
243 | SofQ=sqhcal(Qdiam) |
---|
244 | else |
---|
245 | SofQ=NaN |
---|
246 | print "Error Level = ",ierr |
---|
247 | print "Please report HPMSA problem with above error code" |
---|
248 | endif |
---|
249 | //KillDataFolder root:HayPenMSA |
---|
250 | // variable elapsed=StopMSTimer(timer) |
---|
251 | // Print "elapsed time = ",elapsed |
---|
252 | |
---|
253 | return SofQ |
---|
254 | end |
---|
255 | |
---|
256 | ///////////////////////////////////////////////////////////// |
---|
257 | ///////////////////////////////////////////////////////////// |
---|
258 | // |
---|
259 | // |
---|
260 | // CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING |
---|
261 | // COEFFICIENTS FOR "SQHPA" |
---|
262 | // |
---|
263 | // JOHN B. HAYTER (I.L.L.) 14-SEP-81 |
---|
264 | // |
---|
265 | // ON EXIT: |
---|
266 | // |
---|
267 | // SETA IS THE RESCALED VOLUME FRACTION |
---|
268 | // SGEK IS THE RESCALED CONTACT POTENTIAL |
---|
269 | // SAK IS THE RESCALED SCREENING CONSTANT |
---|
270 | // A,B,C,F,U,V ARE THE MSA COEFFICIENTS |
---|
271 | // G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG): |
---|
272 | // FOR THE GILLAN CONDITION, THE DIFFERENCE FROM |
---|
273 | // ZERO INDICATES THE COMPUTATIONAL ACCURACY. |
---|
274 | // |
---|
275 | // IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS. |
---|
276 | // < 0: FAILED TO CONVERGE |
---|
277 | // |
---|
278 | |
---|
279 | |
---|
280 | Function sqcoef(ir) |
---|
281 | variable ir |
---|
282 | |
---|
283 | variable itm=40.0, acc=5.0E-6, ix,ig,ii,del,e1,e2,f1,f2 |
---|
284 | WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
285 | |
---|
286 | // NVAR a=root:HayPenMSA:a |
---|
287 | // NVAR b=root:HayPenMSA:b |
---|
288 | // NVAR c=root:HayPenMSA:c |
---|
289 | // NVAR f=root:HayPenMSA:f |
---|
290 | // NVAR eta=root:HayPenMSA:eta |
---|
291 | // NVAR gek=root:HayPenMSA:gek |
---|
292 | // NVAR ak=root:HayPenMSA:ak |
---|
293 | // NVAR u=root:HayPenMSA:u |
---|
294 | // NVAR v=root:HayPenMSA:v |
---|
295 | // NVAR gamk=root:HayPenMSA:gamk |
---|
296 | // NVAR seta=root:HayPenMSA:seta |
---|
297 | // NVAR sgek=root:HayPenMSA:sgek |
---|
298 | // NVAR sak=root:HayPenMSA:sak |
---|
299 | // NVAR scal=root:HayPenMSA:scal |
---|
300 | // NVAR g1=root:HayPenMSA:g1 |
---|
301 | // NVAR fval=root:HayPenMSA:fval |
---|
302 | // NVAR evar=root:HayPenMSA:evar |
---|
303 | |
---|
304 | |
---|
305 | ig=1 |
---|
306 | if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) |
---|
307 | ig=0 |
---|
308 | gMSAWave[15]=gMSAWave[14] |
---|
309 | gMSAWave[16]=gMSAWave[4] |
---|
310 | ix=1 |
---|
311 | ir = sqfun(ix,ir) |
---|
312 | gMSAWave[14]=gMSAWave[15] |
---|
313 | gMSAWave[4]=gMSAWave[16] |
---|
314 | if((ir<0.0) %| (gMSAWave[14]>=0.0)) |
---|
315 | return ir |
---|
316 | endif |
---|
317 | endif |
---|
318 | gMSAWave[10]=min(gMSAWave[4],0.20) |
---|
319 | if ((ig!=1) %| ( gMSAWave[9]>=0.15)) |
---|
320 | ii=0 |
---|
321 | do |
---|
322 | ii=ii+1 |
---|
323 | if(ii>itm) |
---|
324 | ir=-1 |
---|
325 | return ir |
---|
326 | endif |
---|
327 | if (gMSAWave[10]<=0.0) |
---|
328 | gMSAWave[10]=gMSAWave[4]/ii |
---|
329 | endif |
---|
330 | if(gMSAWave[10]>0.6) |
---|
331 | gMSAWave[10] = 0.35/ii |
---|
332 | endif |
---|
333 | e1=gMSAWave[10] |
---|
334 | gMSAWave[15]=f1 |
---|
335 | gMSAWave[16]=e1 |
---|
336 | ix=2 |
---|
337 | ir = sqfun(ix,ir) |
---|
338 | f1=gMSAWave[15] |
---|
339 | e1=gMSAWave[16] |
---|
340 | e2=gMSAWave[10]*1.01 |
---|
341 | gMSAWave[15]=f2 |
---|
342 | gMSAWave[16]=e2 |
---|
343 | ix=2 |
---|
344 | ir = sqfun(ix,ir) |
---|
345 | f2=gMSAWave[15] |
---|
346 | e2=gMSAWave[16] |
---|
347 | e2=e1-(e2-e1)*f1/(f2-f1) |
---|
348 | gMSAWave[10] = e2 |
---|
349 | del = abs((e2-e1)/e1) |
---|
350 | while (del>acc) |
---|
351 | gMSAWave[15]=gMSAWave[14] |
---|
352 | gMSAWave[16]=e2 |
---|
353 | ix=4 |
---|
354 | ir = sqfun(ix,ir) |
---|
355 | gMSAWave[14]=gMSAWave[15] |
---|
356 | e2=gMSAWave[16] |
---|
357 | ir=ii |
---|
358 | if ((ig!=1) %| (gMSAWave[10]>=gMSAWave[4])) |
---|
359 | return ir |
---|
360 | endif |
---|
361 | endif |
---|
362 | gMSAWave[15]=gMSAWave[14] |
---|
363 | gMSAWave[16]=gMSAWave[4] |
---|
364 | ix=3 |
---|
365 | ir = sqfun(ix,ir) |
---|
366 | gMSAWave[14]=gMSAWave[15] |
---|
367 | gMSAWave[4]=gMSAWave[16] |
---|
368 | if ((ir>=0) %& (gMSAWave[14]<0.0)) |
---|
369 | ir=-3 |
---|
370 | endif |
---|
371 | return ir |
---|
372 | end |
---|
373 | |
---|
374 | /////////////////////////////////////////////////////// |
---|
375 | /////////////////////////////////////////////////////// |
---|
376 | // |
---|
377 | // |
---|
378 | // CALCULATES VARIOUS COEFFICIENTS AND FUNCTION |
---|
379 | // VALUES FOR "SQCOEF" (USED BY "SQHPA"). |
---|
380 | // |
---|
381 | // ** THIS ROUTINE WORKS LOCALLY IN DOUBLE PRECISION ** |
---|
382 | // |
---|
383 | // JOHN B. HAYTER (I.L.L.) 23-MAR-82 |
---|
384 | // |
---|
385 | // IX=1: SOLVE FOR LARGE K, RETURN G(1+). |
---|
386 | // 2: RETURN FUNCTION TO SOLVE FOR ETA(GILLAN). |
---|
387 | // 3: ASSUME NEAR GILLAN, SOLVE, RETURN G(1+). |
---|
388 | // 4: RETURN G(1+) FOR ETA=ETA(GILLAN). |
---|
389 | // |
---|
390 | // |
---|
391 | |
---|
392 | |
---|
393 | |
---|
394 | Function sqfun(ix,ir) |
---|
395 | variable ix, ir |
---|
396 | |
---|
397 | variable acc=1.0e-6, itm=40.0 |
---|
398 | variable reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,ibig,rgek |
---|
399 | variable rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma |
---|
400 | variable al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5 |
---|
401 | variable a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6 |
---|
402 | variable w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56 |
---|
403 | variable fa,fap,ca,e24g,pwk,qpw,pg,ii,del,fun,fund,g24 |
---|
404 | WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
405 | |
---|
406 | // NVAR a=root:HayPenMSA:a |
---|
407 | // NVAR b=root:HayPenMSA:b |
---|
408 | // NVAR c=root:HayPenMSA:c |
---|
409 | // NVAR f=root:HayPenMSA:f |
---|
410 | // NVAR eta=root:HayPenMSA:eta |
---|
411 | // NVAR gek=root:HayPenMSA:gek |
---|
412 | // NVAR ak=root:HayPenMSA:ak |
---|
413 | // NVAR u=root:HayPenMSA:u |
---|
414 | // NVAR v=root:HayPenMSA:v |
---|
415 | // NVAR gamk=root:HayPenMSA:gamk |
---|
416 | // NVAR seta=root:HayPenMSA:seta |
---|
417 | // NVAR sgek=root:HayPenMSA:sgek |
---|
418 | // NVAR sak=root:HayPenMSA:sak |
---|
419 | // NVAR scal=root:HayPenMSA:scal |
---|
420 | // NVAR g1=root:HayPenMSA:g1 |
---|
421 | // NVAR fval=root:HayPenMSA:fval |
---|
422 | // NVAR evar=root:HayPenMSA:evar |
---|
423 | |
---|
424 | |
---|
425 | // CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981) |
---|
426 | |
---|
427 | reta = gMSAWave[16] |
---|
428 | eta2 = reta*reta |
---|
429 | eta3 = eta2*reta |
---|
430 | e12 = 12.0*reta |
---|
431 | e24 = e12+e12 |
---|
432 | gMSAWave[13] = (gMSAWave[4]/gMSAWave[16])^(1.0/3.0) |
---|
433 | gMSAWave[12]=gMSAWave[6]/gMSAWave[13] |
---|
434 | ibig=0 |
---|
435 | if (( gMSAWave[12]>15.0) %& (ix==1)) |
---|
436 | ibig=1 |
---|
437 | endif |
---|
438 | gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]) |
---|
439 | rgek = gMSAWave[11] |
---|
440 | rak = gMSAWave[12] |
---|
441 | ak2 = rak*rak |
---|
442 | ak1 = 1.0+rak |
---|
443 | dak2 = 1.0/ak2 |
---|
444 | dak4 = dak2*dak2 |
---|
445 | d = 1.0-reta |
---|
446 | d2 = d*d |
---|
447 | dak = d/rak |
---|
448 | dd2 = 1.0/d2 |
---|
449 | dd4 = dd2*dd2 |
---|
450 | dd45 = dd4*2.0e-1 |
---|
451 | eta3d=3.0*reta |
---|
452 | eta6d = eta3d+eta3d |
---|
453 | eta32 = eta3+ eta3 |
---|
454 | eta2d = reta+2.0 |
---|
455 | eta2d2 = eta2d*eta2d |
---|
456 | eta21 = 2.0*reta+1.0 |
---|
457 | eta22 = eta21*eta21 |
---|
458 | |
---|
459 | // ALPHA(I) |
---|
460 | |
---|
461 | al1 = -eta21*dak |
---|
462 | al2 = (14.0*eta2-4.0*reta-1.0)*dak2 |
---|
463 | al3 = 36.0*eta2*dak4 |
---|
464 | |
---|
465 | // BETA(I) |
---|
466 | |
---|
467 | be1 = -(eta2+7.0*reta+1.0)*dak |
---|
468 | be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2 |
---|
469 | be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4 |
---|
470 | |
---|
471 | // NU(I) |
---|
472 | |
---|
473 | vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak |
---|
474 | vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2 |
---|
475 | vu3 = (eta32+3.0e1*reta-5.0)*dak4 |
---|
476 | vu4 = vu1+e24*rak*vu3 |
---|
477 | vu5 = eta6d*(vu2+4.0*vu3) |
---|
478 | |
---|
479 | // PHI(I) |
---|
480 | |
---|
481 | ph1 = eta6d/rak |
---|
482 | ph2 = d-e12*dak2 |
---|
483 | |
---|
484 | // TAU(I) |
---|
485 | |
---|
486 | ta1 = (reta+5.0)/(5.0*rak) |
---|
487 | ta2 = eta2d*dak2 |
---|
488 | ta3 = -e12*rgek*(ta1+ta2) |
---|
489 | ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2) |
---|
490 | ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2 |
---|
491 | |
---|
492 | // DOUBLE PRECISION SINH(K), COSH(K) |
---|
493 | |
---|
494 | ex1 = exp(rak) |
---|
495 | ex2 = 0.0 |
---|
496 | if ( gMSAWave[12]<20.0) |
---|
497 | ex2=exp(-rak) |
---|
498 | endif |
---|
499 | sk=0.5*(ex1-ex2) |
---|
500 | ck = 0.5*(ex1+ex2) |
---|
501 | ckma = ck-1.0-rak*sk |
---|
502 | skma = sk-rak*ck |
---|
503 | |
---|
504 | // a(I) |
---|
505 | |
---|
506 | a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4 |
---|
507 | if (ibig==0) |
---|
508 | a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4 |
---|
509 | a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4 |
---|
510 | endif |
---|
511 | |
---|
512 | // b(I) |
---|
513 | |
---|
514 | b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4 |
---|
515 | if (ibig==0) |
---|
516 | b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4 |
---|
517 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4 |
---|
518 | endif |
---|
519 | |
---|
520 | // V(I) |
---|
521 | |
---|
522 | v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45 |
---|
523 | if (ibig==0) |
---|
524 | v2 = (vu4*ck-vu5*sk)*dd45 |
---|
525 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45 |
---|
526 | endif |
---|
527 | |
---|
528 | |
---|
529 | // P(I) |
---|
530 | |
---|
531 | pp1 = ph1*ph1 |
---|
532 | pp2 = ph2*ph2 |
---|
533 | pp = pp1+pp2 |
---|
534 | p1p2 = ph1*ph2*2.0 |
---|
535 | p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2 |
---|
536 | if (ibig==0) |
---|
537 | p2 = (pp*sk+p1p2*ck)*dd2 |
---|
538 | p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2 |
---|
539 | endif |
---|
540 | |
---|
541 | // T(I) |
---|
542 | |
---|
543 | t1 = ta3+ta4*a1+ta5*b1 |
---|
544 | if (ibig!=0) |
---|
545 | |
---|
546 | // VERY LARGE SCREENING: ASYMPTOTIC SOLUTION |
---|
547 | |
---|
548 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45 |
---|
549 | t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0 |
---|
550 | p3 = (pp1-pp2)*dd2 |
---|
551 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4 |
---|
552 | a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4 |
---|
553 | um6 = t3*a3-e12*v3*v3 |
---|
554 | um5 = t1*a3+a1*t3-e24*v1*v3 |
---|
555 | um4 = t1*a1-e12*v1*v1 |
---|
556 | al6 = e12*p3*p3 |
---|
557 | al5 = e24*p1*p3-b3-b3-ak2 |
---|
558 | al4 = e12*p1*p1-b1-b1 |
---|
559 | w56 = um5*al6-al5*um6 |
---|
560 | w46 = um4*al6-al4*um6 |
---|
561 | fa = -w46/w56 |
---|
562 | ca = -fa |
---|
563 | gMSAWave[3] = fa |
---|
564 | gMSAWave[2] = ca |
---|
565 | gMSAWave[1] = b1+b3*fa |
---|
566 | gMSAWave[0] = a1+a3*fa |
---|
567 | gMSAWave[8] = v1+v3*fa |
---|
568 | gMSAWave[14] = -(p1+p3*fa) |
---|
569 | gMSAWave[15] = gMSAWave[14] |
---|
570 | if (abs(gMSAWave[15])<1.0e-3) |
---|
571 | gMSAWave[15] = 0.0 |
---|
572 | endif |
---|
573 | gMSAWave[10] = gMSAWave[16] |
---|
574 | else |
---|
575 | t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk) |
---|
576 | t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0 |
---|
577 | |
---|
578 | // MU(i) |
---|
579 | |
---|
580 | um1 = t2*a2-e12*v2*v2 |
---|
581 | um2 = t1*a2+t2*a1-e24*v1*v2 |
---|
582 | um3 = t2*a3+t3*a2-e24*v2*v3 |
---|
583 | um4 = t1*a1-e12*v1*v1 |
---|
584 | um5 = t1*a3+t3*a1-e24*v1*v3 |
---|
585 | um6 = t3*a3-e12*v3*v3 |
---|
586 | |
---|
587 | // GILLAN CONDITION ? |
---|
588 | // |
---|
589 | // YES - G(X=1+) = 0 |
---|
590 | // |
---|
591 | // COEFFICIENTS AND FUNCTION VALUE |
---|
592 | // |
---|
593 | IF ((IX==1) %| (IX==3)) |
---|
594 | |
---|
595 | // NO - CALCULATE REMAINING COEFFICIENTS. |
---|
596 | |
---|
597 | // LAMBDA(I) |
---|
598 | |
---|
599 | al1 = e12*p2*p2 |
---|
600 | al2 = e24*p1*p2-b2-b2 |
---|
601 | al3 = e24*p2*p3 |
---|
602 | al4 = e12*p1*p1-b1-b1 |
---|
603 | al5 = e24*p1*p3-b3-b3-ak2 |
---|
604 | al6 = e12*p3*p3 |
---|
605 | |
---|
606 | // OMEGA(I) |
---|
607 | |
---|
608 | w16 = um1*al6-al1*um6 |
---|
609 | w15 = um1*al5-al1*um5 |
---|
610 | w14 = um1*al4-al1*um4 |
---|
611 | w13 = um1*al3-al1*um3 |
---|
612 | w12 = um1*al2-al1*um2 |
---|
613 | |
---|
614 | w26 = um2*al6-al2*um6 |
---|
615 | w25 = um2*al5-al2*um5 |
---|
616 | w24 = um2*al4-al2*um4 |
---|
617 | |
---|
618 | w36 = um3*al6-al3*um6 |
---|
619 | w35 = um3*al5-al3*um5 |
---|
620 | w34 = um3*al4-al3*um4 |
---|
621 | w32 = um3*al2-al3*um2 |
---|
622 | // |
---|
623 | w46 = um4*al6-al4*um6 |
---|
624 | w56 = um5*al6-al5*um6 |
---|
625 | w3526 = w35+w26 |
---|
626 | w3425 = w34+w25 |
---|
627 | |
---|
628 | // QUARTIC COEFFICIENTS |
---|
629 | |
---|
630 | w4 = w16*w16-w13*w36 |
---|
631 | w3 = 2.0*w16*w15-w13*w3526-w12*w36 |
---|
632 | w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526 |
---|
633 | w1 = 2.0*w15*w14-w13*w24-w12*w3425 |
---|
634 | w0 = w14*w14-w12*w24 |
---|
635 | |
---|
636 | // ESTIMATE THE STARTING VALUE OF f |
---|
637 | |
---|
638 | if (ix==1) |
---|
639 | |
---|
640 | // LARGE K |
---|
641 | |
---|
642 | fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32) |
---|
643 | else |
---|
644 | |
---|
645 | |
---|
646 | // ASSUME NOT TOO FAR FROM GILLAN CONDITION. |
---|
647 | // IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE. |
---|
648 | |
---|
649 | gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek) |
---|
650 | if (( gMSAWave[11]<=2.0) %& ( gMSAWave[11]>=0.0) %& ( gMSAWave[12]<=1.0)) |
---|
651 | e24g = e24*rgek*exp(rak) |
---|
652 | pwk = sqrt(e24g) |
---|
653 | qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d |
---|
654 | gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2 |
---|
655 | endif |
---|
656 | pg = p1+gMSAWave[14] |
---|
657 | ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3 |
---|
658 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)) |
---|
659 | fap = -(pg+p2*ca)/p3 |
---|
660 | endif |
---|
661 | |
---|
662 | // AND REFINE IT ACCORDING TO NEWTON |
---|
663 | |
---|
664 | ii=0 |
---|
665 | do |
---|
666 | ii = ii+1 |
---|
667 | if (ii>itm) |
---|
668 | |
---|
669 | // FAILED TO CONVERGE IN ITM ITERATIONS |
---|
670 | |
---|
671 | ir=-2 |
---|
672 | return ir |
---|
673 | endif |
---|
674 | fa = fap |
---|
675 | fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa |
---|
676 | fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa |
---|
677 | fap = fa-fun/fund |
---|
678 | del=abs((fap-fa)/fa) |
---|
679 | while (del>acc) |
---|
680 | ir = ir+ii |
---|
681 | fa = fap |
---|
682 | ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12) |
---|
683 | gMSAWave[14] = -(p1+p2*ca+p3*fa) |
---|
684 | gMSAWave[15] = gMSAWave[14] |
---|
685 | if (abs(gMSAWave[15])<1.0e-3) |
---|
686 | gMSAWave[15] = 0.0 |
---|
687 | endif |
---|
688 | gMSAWave[10] = gMSAWave[16] |
---|
689 | else |
---|
690 | ca = ak2*p1+2.0*(b3*p1-b1*p3) |
---|
691 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)) |
---|
692 | fa = -(p1+p2*ca)/p3 |
---|
693 | if (ix==2) |
---|
694 | gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa |
---|
695 | endif |
---|
696 | if (ix==4) |
---|
697 | gMSAWave[15] = -(p1+p2*ca+p3*fa) |
---|
698 | endif |
---|
699 | endif |
---|
700 | gMSAWave[3] = fa |
---|
701 | gMSAWave[2] = ca |
---|
702 | gMSAWave[1] = b1+b2*ca+b3*fa |
---|
703 | gMSAWave[0] = a1+a2*ca+a3*fa |
---|
704 | gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0] |
---|
705 | endif |
---|
706 | g24 = e24*rgek*ex1 |
---|
707 | gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24) |
---|
708 | return ir |
---|
709 | end |
---|
710 | |
---|
711 | ////////////////////////////////////////////////////////// |
---|
712 | ////////////////////////////////////////////////////////// |
---|
713 | // |
---|
714 | // CALCULATES S(Q) FOR "SQHPA" |
---|
715 | // |
---|
716 | // ** THIS ROUTINE WORKS LOCALLY IN DOUBLE PRECISION ** |
---|
717 | // |
---|
718 | // JOHN B. HAYTER (I.L.L.) 19-AUG-81 |
---|
719 | // |
---|
720 | |
---|
721 | |
---|
722 | Function sqhcal(qq) |
---|
723 | variable qq |
---|
724 | |
---|
725 | variable SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter |
---|
726 | WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
727 | |
---|
728 | |
---|
729 | //NVAR a=root:HayPenMSA:a |
---|
730 | //NVAR b=root:HayPenMSA:b |
---|
731 | //NVAR c=root:HayPenMSA:c |
---|
732 | //NVAR f=root:HayPenMSA:f |
---|
733 | //NVAR eta=root:HayPenMSA:eta |
---|
734 | //NVAR gek=root:HayPenMSA:gek |
---|
735 | //NVAR ak=root:HayPenMSA:ak |
---|
736 | //NVAR u=root:HayPenMSA:u |
---|
737 | //NVAR v=root:HayPenMSA:v |
---|
738 | //NVAR gamk=root:HayPenMSA:gamk |
---|
739 | //NVAR seta=root:HayPenMSA:seta |
---|
740 | //NVAR sgek=root:HayPenMSA:sgek |
---|
741 | //NVAR sak=root:HayPenMSA:sak |
---|
742 | //NVAR scal=root:HayPenMSA:scal |
---|
743 | //NVAR g1=root:HayPenMSA:g1 |
---|
744 | |
---|
745 | etaz = gMSAWave[10] |
---|
746 | akz = gMSAWave[12] |
---|
747 | gekz = gMSAWave[11] |
---|
748 | e24 = 24.0*etaz |
---|
749 | x1 = exp(akz) |
---|
750 | x2 = 0.0 |
---|
751 | if ( gMSAWave[12]<20.0) |
---|
752 | x2 = exp(-akz) |
---|
753 | endif |
---|
754 | ck = 0.5*(x1+x2) |
---|
755 | sk = 0.5*(x1-x2) |
---|
756 | ak2 = akz*akz |
---|
757 | |
---|
758 | if (qq<=0.0) |
---|
759 | SofQ = -1.0/gMSAWave[0] |
---|
760 | else |
---|
761 | qk = qq/gMSAWave[13] |
---|
762 | q2k = qk*qk |
---|
763 | qk2 = 1.0/q2k |
---|
764 | qk3 = qk2/qk |
---|
765 | qqk = 1.0/(qk*(q2k+ak2)) |
---|
766 | sink = sin(qk) |
---|
767 | cosk = cos(qk) |
---|
768 | asink = akz*sink |
---|
769 | qcosk = qk*cosk |
---|
770 | aqk = gMSAWave[0]*(sink-qcosk) |
---|
771 | aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk) |
---|
772 | inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink |
---|
773 | aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3 |
---|
774 | aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk |
---|
775 | aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk |
---|
776 | aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2 |
---|
777 | aqk=aqk -gekz*(asink+qcosk)*qqk |
---|
778 | SofQ = 1.0/(1.0-e24*aqk) |
---|
779 | endif |
---|
780 | return SofQ |
---|
781 | end |
---|
782 | |
---|