1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | |
---|
3 | //////////////////////////////////////////////// |
---|
4 | // GaussUtils.proc and PlotUtils.proc MUST be included for the smearing calculation to compile |
---|
5 | // Adopting these into the experiment will insure that they are always present |
---|
6 | //////////////////////////////////////////////// |
---|
7 | // this function is for the form factor of a right circular cylinder with uniform scattering length density |
---|
8 | // |
---|
9 | // 06 NOV 98 SRK |
---|
10 | //////////////////////////////////////////////// |
---|
11 | |
---|
12 | Proc PlotHollowCylinderForm(num,qmin,qmax) |
---|
13 | Variable num=128,qmin=0.001,qmax=0.7 |
---|
14 | Prompt num "Enter number of data points for model: " |
---|
15 | Prompt qmin "Enter minimum q-value (^-1) for model: " |
---|
16 | Prompt qmax "Enter maximum q-value (^-1) for model: " |
---|
17 | |
---|
18 | Make/O/D/n=(num) xwave_Hcyl,ywave_Hcyl |
---|
19 | xwave_Hcyl = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
20 | Make/O/D coef_Hcyl = {1.,20.,30.,400,3.0e-6,0.01} |
---|
21 | make/o/t parameters_Hcyl = {"scale","core radius (A)","shell radius (A)","length (A)","contrast (A^-2)","incoh. bkg (cm^-1)"} |
---|
22 | Edit parameters_Hcyl,coef_Hcyl |
---|
23 | ywave_Hcyl := HollowCylinderForm(coef_Hcyl,xwave_Hcyl) |
---|
24 | Display ywave_Hcyl vs xwave_Hcyl |
---|
25 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
26 | Label bottom "q (\\S-1\\M)" |
---|
27 | Label left "Intensity (cm\\S-1\\M)" |
---|
28 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
29 | End |
---|
30 | /////////////////////////////////////////////////////////// |
---|
31 | |
---|
32 | Proc PlotSmearedHollowCylinderForm() |
---|
33 | //no input parameters necessary, it MUST use the experimental q-values |
---|
34 | // from the experimental data read in from an AVE/QSIG data file |
---|
35 | |
---|
36 | // if no gQvals wave, data must not have been loaded => abort |
---|
37 | if(ResolutionWavesMissing()) |
---|
38 | Abort |
---|
39 | endif |
---|
40 | |
---|
41 | // Setup parameter table for model function |
---|
42 | Make/O/D smear_coef_Hcyl = {1.,20.,30.,400,3.0e-6,0.01} |
---|
43 | make/o/t smear_parameters_Hcyl = {"scale","core radius (A)","shell radius (A)","length (A)","contrast (A^-2)","incoh. bkg (cm^-1)"} |
---|
44 | Edit smear_parameters_Hcyl,smear_coef_Hcyl |
---|
45 | |
---|
46 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
47 | // make extra copy of experimental q-values for easy plotting |
---|
48 | Duplicate/O $gQvals smeared_Hcyl,smeared_qvals |
---|
49 | SetScale d,0,0,"1/cm",smeared_Hcyl |
---|
50 | |
---|
51 | smeared_Hcyl := SmearedHollowCylinderForm(smear_coef_Hcyl,$gQvals) |
---|
52 | Display smeared_Hcyl vs smeared_qvals |
---|
53 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
54 | Label bottom "q (\\S-1\\M)" |
---|
55 | Label left "Intensity (cm\\S-1\\M)" |
---|
56 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
57 | End |
---|
58 | |
---|
59 | /////////////////////////////////////////////////////////////// |
---|
60 | // unsmeared model calculation |
---|
61 | /////////////////////////// |
---|
62 | Function HollowCylinderForm(w,x) : FitFunc |
---|
63 | Wave w |
---|
64 | Variable x |
---|
65 | |
---|
66 | //The input variables are (and output) |
---|
67 | //[0] scale |
---|
68 | //[1] cylinder CORE RADIUS (A) |
---|
69 | //[2] cylinder shell radius (A) |
---|
70 | //[3] total cylinder LENGTH (A) |
---|
71 | //[4] contrast (A^-2) |
---|
72 | //[5] background (cm^-1) |
---|
73 | Variable scale,length,delrho,bkg,rcore,rshell,contrast |
---|
74 | scale = w[0] |
---|
75 | rcore = w[1] |
---|
76 | rshell = w[2] |
---|
77 | length = w[3] |
---|
78 | contrast = w[4] |
---|
79 | bkg = w[5] |
---|
80 | // |
---|
81 | // the OUTPUT form factor is <f^2>/Vcyl [cm-1] |
---|
82 | // |
---|
83 | |
---|
84 | // local variables |
---|
85 | Variable nord,ii,va,vb,contr,vcyl,nden,summ,yyy,zi,qq,halfheight |
---|
86 | Variable answer |
---|
87 | String weightStr,zStr |
---|
88 | |
---|
89 | weightStr = "gauss76wt" |
---|
90 | zStr = "gauss76z" |
---|
91 | |
---|
92 | |
---|
93 | // if wt,z waves don't exist, create them |
---|
94 | // 20 Gauss points is not enough for cylinder calculation |
---|
95 | |
---|
96 | if (WaveExists($weightStr) == 0) // wave reference is not valid, |
---|
97 | Make/D/N=76 $weightStr,$zStr |
---|
98 | Wave w76 = $weightStr |
---|
99 | Wave z76 = $zStr // wave references to pass |
---|
100 | Make76GaussPoints(w76,z76) |
---|
101 | // printf "w[0],z[0] = %g %g\r", w76[0],z76[0] |
---|
102 | else |
---|
103 | if(exists(weightStr) > 1) |
---|
104 | Abort "wave name is already in use" // execute if condition is false |
---|
105 | endif |
---|
106 | Wave w76 = $weightStr |
---|
107 | Wave z76 = $zStr // Not sure why this has to be "declared" twice |
---|
108 | // printf "w[0],z[0] = %g %g\r", w76[0],z76[0] |
---|
109 | endif |
---|
110 | |
---|
111 | |
---|
112 | // set up the integration |
---|
113 | // end points and weights |
---|
114 | nord = 76 |
---|
115 | va = 0 |
---|
116 | vb = 1 |
---|
117 | halfheight = length/2.0 |
---|
118 | |
---|
119 | // evaluate at Gauss points |
---|
120 | // remember to index from 0,size-1 |
---|
121 | |
---|
122 | qq = x //current x point is the q-value for evaluation |
---|
123 | summ = 0.0 // initialize integral |
---|
124 | ii=0 |
---|
125 | do |
---|
126 | // Using 76 Gauss points |
---|
127 | zi = ( z76[ii]*(vb-va) + vb + va )/2.0 |
---|
128 | yyy = w76[ii] * Hollowcyl(qq, rcore, rshell, length, zi) |
---|
129 | summ += yyy |
---|
130 | |
---|
131 | ii+=1 |
---|
132 | while (ii<nord) // end of loop over quadrature points |
---|
133 | // |
---|
134 | // calculate value of integral to return |
---|
135 | |
---|
136 | answer = (vb-va)/2.0*summ |
---|
137 | |
---|
138 | // multiply by the contrast |
---|
139 | answer *= contrast*contrast |
---|
140 | |
---|
141 | //normalize by cylinder volume |
---|
142 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
143 | vcyl=Pi*(rshell^2-rcore^2)*length |
---|
144 | answer *= vcyl |
---|
145 | //convert to [cm-1] |
---|
146 | answer *= 1.0e8 |
---|
147 | //Scale |
---|
148 | answer *= scale |
---|
149 | // add in the background |
---|
150 | answer += bkg |
---|
151 | |
---|
152 | Return (answer) |
---|
153 | |
---|
154 | End //End of function HollowCylinderForm() |
---|
155 | |
---|
156 | /////////////////////////////////////////////////////////////// |
---|
157 | Function Hollowcyl(qq,r2,r1,h,theta) |
---|
158 | Variable qq,r2,r1,h,theta |
---|
159 | |
---|
160 | // qq is the q-value for the calculation (1/A) |
---|
161 | // r2 is the core radius of the cylinder (A) |
---|
162 | //r1 is the shell raduis |
---|
163 | // rho(n) are the respective SLD's |
---|
164 | // h is the total-LENGTH of the cylinder = L (A) |
---|
165 | // theta is the dummy variable for the integration (x in Feigin's notation) |
---|
166 | |
---|
167 | //Local variables |
---|
168 | Variable gamma,besarg1,besarg2,lam1,lam2,t2,retval,psi,sinarg |
---|
169 | |
---|
170 | gamma = r2/r1 |
---|
171 | besarg1 = qq*r1*sqrt(1-theta^2) |
---|
172 | besarg2 = qq*r2*sqrt(1-theta^2) |
---|
173 | lam1 = 2*bessJ(1,besarg1)/besarg1 |
---|
174 | lam2 = 2*bessJ(1,besarg2)/besarg2 |
---|
175 | psi = 1/(1-gamma^2)*(lam1 - gamma^2*lam2) //SRK 10/19/00 |
---|
176 | |
---|
177 | sinarg = qq*h*theta/2 |
---|
178 | t2 = sin(sinarg)/sinarg |
---|
179 | |
---|
180 | retval = psi*psi*t2*t2 |
---|
181 | |
---|
182 | return retval |
---|
183 | |
---|
184 | End //Function Hollowcyl() |
---|
185 | |
---|
186 | |
---|
187 | // this is all there is to the smeared calculation! |
---|
188 | Function SmearedHollowCylinderForm(w,x) :FitFunc |
---|
189 | Wave w |
---|
190 | Variable x |
---|
191 | |
---|
192 | Variable ans |
---|
193 | SVAR sq = gSig_Q |
---|
194 | SVAR qb = gQ_bar |
---|
195 | SVAR sh = gShadow |
---|
196 | SVAR gQ = gQVals |
---|
197 | |
---|
198 | //the name of your unsmeared model is the first argument |
---|
199 | ans = Smear_Model_20(HollowCylinderForm,$sq,$qb,$sh,$gQ,w,x) |
---|
200 | |
---|
201 | return(ans) |
---|
202 | End |
---|