1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | |
---|
3 | //////////////////////////////////////////////// |
---|
4 | // GaussUtils.proc and PlotUtils.proc MUST be included for the smearing calculation to compile |
---|
5 | // Adopting these into the experiment will insure that they are always present |
---|
6 | //////////////////////////////////////////////// |
---|
7 | // this example is for the scattered intensity from a dense dispersion of polydisperse spheres |
---|
8 | // hard sphere interactions are included (exact, multicomponent Percus-Yevick) |
---|
9 | // the polydispersity in radius is a Schulz distribution |
---|
10 | // |
---|
11 | // 06 NOV 98 SRK |
---|
12 | //////////////////////////////////////////////// |
---|
13 | |
---|
14 | Proc PlotPolyHardSpheres(num,qmin,qmax) |
---|
15 | Variable num=128,qmin=0.001,qmax=0.7 |
---|
16 | Prompt num "Enter number of data points for model: " |
---|
17 | Prompt qmin "Enter minimum q-value (^-1) for model: " |
---|
18 | Prompt qmax "Enter maximum q-value (^-1) for model: " |
---|
19 | |
---|
20 | Make/O/D/n=(num) xwave_phs,ywave_phs |
---|
21 | xwave_phs =alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
22 | Make/O/D coef_phs = {100,0.12,0.1,2.0e-6,0.1} |
---|
23 | make/o/t parameters_phs = {"Radius (A)","polydispersity","volume fraction","contrast (A^-2)","background (cm^-1)"} |
---|
24 | Edit parameters_phs,coef_phs |
---|
25 | ywave_phs := PolyHSIntensity(coef_phs,xwave_phs) |
---|
26 | Display ywave_phs vs xwave_phs |
---|
27 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
28 | Label bottom "q (\\S-1\\M)" |
---|
29 | Label left "Intensity (cm\\S-1\\M)" |
---|
30 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
31 | End |
---|
32 | |
---|
33 | /////////////////////////////////////////////////////////// |
---|
34 | |
---|
35 | Proc PlotSmearedPolyHardSpheres() |
---|
36 | //no input parameters necessary, it MUST use the experimental q-values |
---|
37 | // from the experimental data read in from an AVE/QSIG data file |
---|
38 | |
---|
39 | // if no gQvals wave, data must not have been loaded => abort |
---|
40 | if(ResolutionWavesMissing()) |
---|
41 | Abort |
---|
42 | endif |
---|
43 | |
---|
44 | // Setup parameter table for model function |
---|
45 | Make/O/D smear_coef_phs = {100,0.12,0.1,2.0e-6,0.1} |
---|
46 | make/o/t smear_parameters_phs = {"Radius (A)","polydispersity","volume fraction","contrast (A^-2)","background (cm^-1)"} |
---|
47 | Edit smear_parameters_phs,smear_coef_phs |
---|
48 | |
---|
49 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
50 | // make extra copy of experimental q-values for easy plotting |
---|
51 | Duplicate/O $gQvals smeared_phs,smeared_qvals |
---|
52 | SetScale d,0,0,"1/cm",smeared_phs |
---|
53 | |
---|
54 | smeared_phs := SmearedPolyHardSpheres(smear_coef_phs,$gQvals) |
---|
55 | Display smeared_phs vs smeared_qvals |
---|
56 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
57 | Label bottom "q (\\S-1\\M)" |
---|
58 | Label left "Intensity (cm\\S-1\\M)" |
---|
59 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
60 | End |
---|
61 | |
---|
62 | |
---|
63 | /////////////////////////////////////////////////////////////// |
---|
64 | // unsmeared model calculation |
---|
65 | // This program calculates the effective structure factor for a suspension |
---|
66 | // of spheres whose size distribution is given by a Schulz distribution |
---|
67 | // PY closure was used to solve. Equations are analytical. |
---|
68 | // Follows paper by W.L. Griffith, Phys. Rev. A 35 (5) p.2200 1987 |
---|
69 | // Original coding (F) by Jon Bender, U. Delaware |
---|
70 | // converted to c 2/97 SRK |
---|
71 | // converted to IGOR 12/97 SRK |
---|
72 | // |
---|
73 | // replace single letter variables like "e" with "ee" (to be done MAY04) |
---|
74 | // |
---|
75 | /////////////////////////// |
---|
76 | Function PolyHSIntensity(w,k) : FitFunc |
---|
77 | Wave w // the coefficient wave |
---|
78 | Variable k // the x values, as a variable (single k is OK) |
---|
79 | |
---|
80 | // assign local variables |
---|
81 | Variable mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho,beta |
---|
82 | Variable ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp |
---|
83 | Variable ka,zz,v1,v2,p1,p2 |
---|
84 | Variable h1,h2,h3,h4,e1,yy,y1,ss,s1,s2,s3,hint1,hint2 |
---|
85 | Variable capl,capl1,capmu,capmu1,r3,pq,happ |
---|
86 | Variable ka2,r1,heff |
---|
87 | Variable hh |
---|
88 | |
---|
89 | //* reassign names to the variable set */ |
---|
90 | Variable rad,z2,phi,cont,bkg,sigma |
---|
91 | |
---|
92 | rad = w[0] // radius (A) |
---|
93 | sigma = 2*rad |
---|
94 | z2 = w[1] //polydispersity (0<z2<1) |
---|
95 | phi = w[2] // volume fraction (0<phi<1) |
---|
96 | cont = w[3]*1.0e4 // contrast (odd units) |
---|
97 | bkg = w[4] // background (1/cm) |
---|
98 | |
---|
99 | zz=1/(z2*z2)-1.0 |
---|
100 | bb = sigma/(zz+1) |
---|
101 | cc = zz+1 |
---|
102 | |
---|
103 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
104 | r1 = sigma/2.0 |
---|
105 | r3 = r1*r1*r1 |
---|
106 | r3 *= (zz+2)*(zz+3)/((zz+1)*(zz+1)) |
---|
107 | rho=phi/(1.3333333333*pi*r3) |
---|
108 | t1 = rho*bb*cc |
---|
109 | t2 = rho*bb*bb*cc*(cc+1) |
---|
110 | t3 = rho*bb*bb*bb*cc*(cc+1)*(cc+2) |
---|
111 | capd = 1-pi*t3/6 |
---|
112 | //************ |
---|
113 | v1=1/(1+bb*bb*k*k) |
---|
114 | v2=1/(4+bb*bb*k*k) |
---|
115 | pp=(v1^(cc/2))*sin(cc*atan(bb*k)) |
---|
116 | p1=bb*cc*(v1^((cc+1)/2))*sin((cc+1)*atan(bb*k)) |
---|
117 | p2=cc*(cc+1)*bb*bb*(v1^((cc+2)/2))*sin((cc+2)*atan(bb*k)) |
---|
118 | mu=(2^cc)*(v2^(cc/2))*sin(cc*atan(bb*k/2)) |
---|
119 | mu1=(2^(cc+1))*bb*cc*(v2^((cc+1)/2))*sin((cc+1)*atan(k*bb/2)) |
---|
120 | s1=bb*cc |
---|
121 | s2=cc*(cc+1)*bb*bb |
---|
122 | s3=cc*(cc+1)*(cc+2)*bb*bb*bb |
---|
123 | chi=(v1^(cc/2))*cos(cc*atan(bb*k)) |
---|
124 | chi1=bb*cc*(v1^((cc+1)/2))*cos((cc+1)*atan(bb*k)) |
---|
125 | chi2=cc*(cc+1)*bb*bb*(v1^((cc+2)/2))*cos((cc+2)*atan(bb*k)) |
---|
126 | ll=(2^cc)*(v2^(cc/2))*cos(cc*atan(bb*k/2)) |
---|
127 | l1=(2^(cc+1))*bb*cc*(v2^((cc+1)/2))*cos((cc+1)*atan(k*bb/2)) |
---|
128 | d1=(pi/capd)*(2+(pi/capd)*(t3-(rho/k)*(k*s3-p2))) |
---|
129 | d2=((pi/capd)^2)*(rho/k)*(k*s2-p1) |
---|
130 | d3=(-1.0)*((pi/capd)^2)*(rho/k)*(k*s1-pp) |
---|
131 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)) |
---|
132 | d5=((pi/capd)^2)*((rho/k)*(chi-1)+0.5*k*t2) |
---|
133 | d6=((pi/capd)^2)*(rho/k)*(chi2-s2) |
---|
134 | // e1,e,y1,y evaluated in one big ugly line instead - no continuation character in IGOR |
---|
135 | // e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1)*(chi2-s2) |
---|
136 | // -(chi1-s1)*(chi1-s1)-(k*s1-p)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
137 | // e=1-(2*pi/capd)*(1+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-p) |
---|
138 | // -(2*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
139 | // y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-p)*(chi2-s2) |
---|
140 | // -2*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1)); |
---|
141 | // y = (2*pi/capd)*(1+0.5*pi*t3/capd)*(rho/k/k/k) |
---|
142 | // *(chi+0.5*k*k*s2-1)-(2*pi*rho/capd/k/k)*(k*s2-p1 |
---|
143 | // +(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
144 | |
---|
145 | e1=((pi/capd)^2)*((rho/k/k)^2)*((chi-1)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+((k*s2-p1)^2)) |
---|
146 | ee=1-(2*pi/capd)*(1+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1 |
---|
147 | y1=((pi/capd)^2)*((rho/k/k)^2)*((k*s1-pp)*(chi2-s2)-2*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1)) |
---|
148 | yy = (2*pi/capd)*(1+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1)-(2*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1 |
---|
149 | |
---|
150 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)) |
---|
151 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)) |
---|
152 | capmu=2.0*pi*cont*rho/k/k/k*(1-chi-0.5*k*p1) |
---|
153 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2) |
---|
154 | |
---|
155 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)) |
---|
156 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)) |
---|
157 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)) |
---|
158 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)) |
---|
159 | |
---|
160 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
161 | |
---|
162 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)) |
---|
163 | |
---|
164 | //* This part computes the first integral in equation (1). It also |
---|
165 | // generates the KC approximated effective structure factor.*/ |
---|
166 | |
---|
167 | pq=4*pi*cont*(sin(k*sigma/2)-0.5*k*sigma*cos(k*sigma/2)) |
---|
168 | hint2=8*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1-chi-k*p1+0.25*k*k*(s2+chi2)) |
---|
169 | |
---|
170 | ka=k*(sigma/2) |
---|
171 | // |
---|
172 | hh=hint1+hint2 // this is the model intensity |
---|
173 | // |
---|
174 | heff=1.0+hint1/hint2 |
---|
175 | ka2=ka*ka |
---|
176 | //* |
---|
177 | // heff is PY analytical solution for intensity divided by the |
---|
178 | // form factor. happ is the KC approximated effective S(q) |
---|
179 | |
---|
180 | //******************* |
---|
181 | // add in the background then return the intensity value |
---|
182 | |
---|
183 | return (hh+bkg) |
---|
184 | |
---|
185 | End // end of fcngrif() |
---|
186 | |
---|
187 | // this is all there is to the smeared calculation! |
---|
188 | Function SmearedPolyHardSpheres(w,x) :FitFunc |
---|
189 | Wave w |
---|
190 | Variable x |
---|
191 | |
---|
192 | Variable ans |
---|
193 | SVAR sq = gSig_Q |
---|
194 | SVAR qb = gQ_bar |
---|
195 | SVAR sh = gShadow |
---|
196 | SVAR gQ = gQVals |
---|
197 | |
---|
198 | //the name of your unsmeared model is the first argument |
---|
199 | ans = Smear_Model_20(PolyHSIntensity,$sq,$qb,$sh,$gQ,w,x) |
---|
200 | |
---|
201 | return(ans) |
---|
202 | End |
---|