1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | |
---|
3 | |
---|
4 | // with the Debye Sphere method -- as of Jan 2011 |
---|
5 | // the discretization seems to work now, and is significantly faster than the old double sum |
---|
6 | // |
---|
7 | // now I need to XOP-it (done) |
---|
8 | |
---|
9 | |
---|
10 | // routines to calculate I(q) and p(r) from the 3d arrangement of spheres |
---|
11 | // using Debye's method |
---|
12 | // |
---|
13 | |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | //calculate I(q) given a set of spheres as xyz |
---|
18 | // |
---|
19 | // this is the REALLY slow way |
---|
20 | // |
---|
21 | Function CalcIQRfromXYZ(xv,yv,zv,qval,rho,rval,grid) |
---|
22 | Wave xv,yv,zv |
---|
23 | Variable qval,rho,rval,grid |
---|
24 | |
---|
25 | Variable num=numpnts(xv),ii,kk,dik |
---|
26 | Variable Iqr,vol,dum,fQR |
---|
27 | |
---|
28 | //NVAR dCall=dCall |
---|
29 | vol=4*Pi/3*rval*rval*rval |
---|
30 | Iqr=0 |
---|
31 | fQR=PhiQR(qval,rval) |
---|
32 | //do i=j sum |
---|
33 | for(ii=0;ii<num;ii+=1) |
---|
34 | dum = rho*vol*fQR |
---|
35 | Iqr += dum*dum |
---|
36 | endfor |
---|
37 | //do i != j (double) sum |
---|
38 | for(ii=0;ii<num;ii+=1) |
---|
39 | for(kk=(ii+1);kk<num;kk+=1) |
---|
40 | dik=AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
41 | //dCall += 1 |
---|
42 | dum = rho*vol*fQR |
---|
43 | Iqr += 2*dum*dum*sinc(dik*qval) |
---|
44 | endfor |
---|
45 | endfor |
---|
46 | |
---|
47 | return(Iqr) |
---|
48 | End |
---|
49 | |
---|
50 | //calculate I(q) given a set of spheres as xyz |
---|
51 | // |
---|
52 | // this is the REALLY slow way |
---|
53 | // |
---|
54 | Function CalcIQRfromMat(mat,qval,rho,rval,grid) |
---|
55 | Wave mat |
---|
56 | Variable qval,rho,rval,grid |
---|
57 | |
---|
58 | Variable num,ii,kk,dik |
---|
59 | Variable Iqr,vol,dum,fQR,dCall=0 |
---|
60 | |
---|
61 | ParseMatrix3D_rho(mat) |
---|
62 | WAVE xv=x3d |
---|
63 | WAVE yv=y3d |
---|
64 | WAVE zv=z3d |
---|
65 | WAVE rho3d=rho3d |
---|
66 | num=numpnts(xv) |
---|
67 | |
---|
68 | vol=4*Pi/3*rval*rval*rval |
---|
69 | Iqr=0 |
---|
70 | fQR=PhiQR(qval,rval) |
---|
71 | //do i=j sum |
---|
72 | for(ii=0;ii<num;ii+=1) |
---|
73 | dum = rho3d[ii]*vol*fQR |
---|
74 | Iqr += dum*dum |
---|
75 | endfor |
---|
76 | |
---|
77 | //do i != j (double) sum |
---|
78 | for(ii=0;ii<num;ii+=1) |
---|
79 | for(kk=(ii+1);kk<num;kk+=1) |
---|
80 | dik=AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
81 | //dCall += 1 |
---|
82 | dum = vol*fQR |
---|
83 | Iqr += 2*dum*dum*rho3d[ii]*rho3d[kk]*sinc(dik*qval) |
---|
84 | endfor |
---|
85 | endfor |
---|
86 | |
---|
87 | // Print "num, dCall = ", num,dCall |
---|
88 | return(Iqr) |
---|
89 | End |
---|
90 | |
---|
91 | //calculate I(q) given a set of spheres as xyz |
---|
92 | // |
---|
93 | // this is the improved way, doing distance binning |
---|
94 | // -- substantially speeded up with two XOPs that take care of the double loops |
---|
95 | // binning into the histogram is the bottleneck at this point, but I see no |
---|
96 | // easy way to make this multi-processor aware. Supposedly it should be easy |
---|
97 | // to do, but I don't see the fast way to dispatch it to threads without writing four |
---|
98 | // functions like in the MC simulation code. Maybe data folders? |
---|
99 | // |
---|
100 | // some of the work is still done in Igor, but it's the really fast stuff, after checking the timing of each step. |
---|
101 | // |
---|
102 | // can't use the SLD information here, since one of the major assumptions of this simplification |
---|
103 | // is that the SLDs of the spheres are all the same |
---|
104 | Function CalcIQRfromMat_bin(qW,iqr,xv,yv,zv,rho,rval,grid) |
---|
105 | Wave qW,iqr,xv,yv,zv |
---|
106 | Variable rho,rval,grid |
---|
107 | |
---|
108 | Variable num,ii,kk,dik,iter,t1 |
---|
109 | Variable vol,dum,fQR,qval,F2Q |
---|
110 | Variable dmax,binWidth,Qmax,numBins,binIndex,val |
---|
111 | Variable nthreads |
---|
112 | |
---|
113 | t1 = ticks |
---|
114 | |
---|
115 | num=numpnts(xv) |
---|
116 | |
---|
117 | //find maximum distance |
---|
118 | |
---|
119 | //// I don't have enough space for the NxN matrix once there are 10k or so points. |
---|
120 | //// Make/O/D/N=(num,num) distMat |
---|
121 | //// distMat = 0 |
---|
122 | // |
---|
123 | // iter = 0 |
---|
124 | // for(ii=0;ii<num;ii+=1) |
---|
125 | // for(kk=(ii+1);kk<num;kk+=1) |
---|
126 | //// dist[ii]=AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
127 | // distMat[ii][kk]=AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
128 | // endfor |
---|
129 | // endfor |
---|
130 | |
---|
131 | // // so this is a quick way to find the maximum distance. entering a value would be easier |
---|
132 | // Make/O/D/N=(num-1) dist |
---|
133 | // for(ii=0;ii<num;ii+=1) |
---|
134 | // for(kk=(ii+1);kk<num;kk+=1) |
---|
135 | // dist[ii]=AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
136 | // endfor |
---|
137 | // endfor |
---|
138 | // |
---|
139 | // dmax = WaveMax(dist) |
---|
140 | // Print "dmax = ",dmax |
---|
141 | // Printf "Finding dmax Igor = %g seconds\r",(ticks-t1)/60.15 |
---|
142 | // t1 = ticks |
---|
143 | |
---|
144 | ////// Find maxiumum distance |
---|
145 | // write an XOP that takes the xyz and returns the square of the maximum distance, must sqrt then multiply by grid distance |
---|
146 | |
---|
147 | // the num < 10000 points is an empirical value for where the overhead of threading is OK |
---|
148 | nthreads=ThreadProcessorCount |
---|
149 | if(nthreads == 1 || num < 10000 ) |
---|
150 | dmax = maxDistanceX(xv,yv,zv,0,numpnts(xv)) |
---|
151 | // Print "dmax = ",dmax |
---|
152 | // Printf "Finding dmax XOP = %g seconds\r",(ticks-t1)/60.15 |
---|
153 | // t1 = ticks |
---|
154 | else |
---|
155 | dmax = maxDistance_Threaded(xv,yv,zv) |
---|
156 | // Print "dmax = ",dmax |
---|
157 | endif |
---|
158 | |
---|
159 | dmax = sqrt(dmax) |
---|
160 | dmax *= grid |
---|
161 | // Print "dmax = ",dmax |
---|
162 | |
---|
163 | // Printf "Finding dmax Threaded = %g seconds\r",(ticks-t1)/60.15 |
---|
164 | // t1 = ticks |
---|
165 | |
---|
166 | |
---|
167 | // use a bin width Dmax / 10000 as suggested in Otto's book, pg 160 |
---|
168 | // |
---|
169 | Variable ndiv=100000 |
---|
170 | binWidth = dmax/ndiv |
---|
171 | // Print "binWidth = ",binWidth |
---|
172 | numBins = ndiv |
---|
173 | Make/O/D/N=(numBins) distBins |
---|
174 | |
---|
175 | distBins = 0 |
---|
176 | |
---|
177 | // Printf "Initializing distBins = %g seconds\r",(ticks-t1)/60.15 |
---|
178 | // t1 = ticks |
---|
179 | |
---|
180 | // for(ii=0;ii<num;ii+=1) |
---|
181 | // for(kk=(ii+1);kk<num;kk+=1) |
---|
182 | // val = AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
183 | // binIndex = trunc(val/binWidth-0.5) |
---|
184 | // if(binIndex > numBins -1 ) |
---|
185 | // Print "bad index" |
---|
186 | // else |
---|
187 | // distBins[binIndex] += 1 |
---|
188 | // endif |
---|
189 | // endfor |
---|
190 | // endfor |
---|
191 | |
---|
192 | |
---|
193 | ///// threading of the bins |
---|
194 | |
---|
195 | //write an XOP that takes the xyz and bins, and fills them |
---|
196 | //distBins is returned |
---|
197 | nthreads=ThreadProcessorCount |
---|
198 | |
---|
199 | if(nthreads == 1) |
---|
200 | binDistanceX(xv, yv, zv, distBins, grid, binWidth,0,numpnts(xv)) //the end point is the numpnts, not n-1 |
---|
201 | else |
---|
202 | binDistance_Threaded(xv, yv, zv, distBins, grid, binWidth) |
---|
203 | endif |
---|
204 | |
---|
205 | // Printf "Binning = %g seconds\r",(ticks-t1)/60.15 |
---|
206 | // t1 = ticks |
---|
207 | |
---|
208 | // WaveStats/Q distBins |
---|
209 | // Print "binned values, numSpheres = ",V_avg*V_npnts,num |
---|
210 | |
---|
211 | Duplicate/O distBins dist_at_bin |
---|
212 | for(ii=0;ii<numBins;ii+=1) |
---|
213 | dist_at_bin[ii] = ii*binWidth |
---|
214 | endfor |
---|
215 | |
---|
216 | |
---|
217 | // remove all of the bins with zero distance, then reset the number of Bins |
---|
218 | RemoveZerosXY(distBins, dist_at_bin) |
---|
219 | numBins = numpnts(distBins) |
---|
220 | |
---|
221 | // Printf "Removing zeroes = %g seconds\r",(ticks-t1)/60.15 |
---|
222 | // t1 = ticks |
---|
223 | |
---|
224 | vol=4*Pi/3*rval*rval*rval |
---|
225 | |
---|
226 | Iqr=0 |
---|
227 | |
---|
228 | Variable nq = numpnts(qW) |
---|
229 | |
---|
230 | // Make/O/D/N=(nq) Sij_Bin |
---|
231 | |
---|
232 | for(kk=0;kk<nq;kk+=1) // loop over the q-values |
---|
233 | |
---|
234 | qval = qW[kk] |
---|
235 | fQR=PhiQR(qval,rval) |
---|
236 | F2Q = fQR*fQR*rho*rho*vol*vol |
---|
237 | |
---|
238 | for(ii=0;ii<numBins;ii+=1) |
---|
239 | Iqr[kk] += distBins[ii]*sinc(qval*dist_at_bin[ii]) |
---|
240 | endfor |
---|
241 | |
---|
242 | // Sij_Bin[kk] = num + 2*Iqr[kk] |
---|
243 | |
---|
244 | Iqr[kk] = F2Q*(num + 2*Iqr[kk]) |
---|
245 | |
---|
246 | endfor |
---|
247 | |
---|
248 | // Printf "Loop over q = %g seconds\r",(ticks-t1)/60.15 |
---|
249 | |
---|
250 | return(0) |
---|
251 | End |
---|
252 | |
---|
253 | // support up to 8 threads at this time |
---|
254 | Function binDistance_Threaded(xv, yv, zv, distBins, grid, binWidth) |
---|
255 | Wave xv, yv, zv, distBins |
---|
256 | Variable grid, binWidth |
---|
257 | |
---|
258 | Variable nthreads,mt,left,right |
---|
259 | Variable ii,num |
---|
260 | |
---|
261 | nthreads=ThreadProcessorCount |
---|
262 | |
---|
263 | if(nthreads > 8) |
---|
264 | nthreads = 8 |
---|
265 | endif |
---|
266 | |
---|
267 | mt = ThreadGroupCreate(nthreads) |
---|
268 | |
---|
269 | ii=0 |
---|
270 | left = 0 |
---|
271 | num = numpnts(xv) |
---|
272 | |
---|
273 | for(ii=0;ii<nthreads;ii+=1) |
---|
274 | Duplicate/O distBins $("distBins"+num2str(ii)) |
---|
275 | |
---|
276 | // this is an even spreading of the points - not appropriate here for the triangle |
---|
277 | // Print (ii*num/nthreads),((ii+1)*num/nthreads) |
---|
278 | // ThreadStart mt,i,Cyl_PolyRadius_T(cw,yw,xw,(ii*num/nthreads),((ii+1)*num/nthreads)) |
---|
279 | |
---|
280 | // this splits up the triangle into equal area chunks trapezoid left(ii) -> right(ii) |
---|
281 | // be sure that for the last iteration of ii, right = 1 *(num) |
---|
282 | right = 1 - sqrt(1- (ii+1)/nthreads) |
---|
283 | |
---|
284 | // Print left,right |
---|
285 | |
---|
286 | if(ii==0) |
---|
287 | Wave distBins0 |
---|
288 | distBins0 = 0 |
---|
289 | //Print (ii*num/nthreads),((ii+1)*num/nthreads) |
---|
290 | //ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins0, grid, binWidth,(ii*num/nthreads),((ii+1)*num/nthreads)) |
---|
291 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins0, grid, binWidth, left*num, right*num) |
---|
292 | endif |
---|
293 | if(ii==1) |
---|
294 | Wave distBins1 |
---|
295 | distBins1 = 0 |
---|
296 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins1, grid, binWidth, left*num, right*num) |
---|
297 | endif |
---|
298 | if(ii==2) |
---|
299 | Wave distBins2 |
---|
300 | distBins2 = 0 |
---|
301 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins2, grid, binWidth, left*num, right*num) |
---|
302 | endif |
---|
303 | if(ii==3) |
---|
304 | Wave distBins3 |
---|
305 | distBins3 = 0 |
---|
306 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins3, grid, binWidth, left*num, right*num) |
---|
307 | endif |
---|
308 | if(ii==4) |
---|
309 | Wave distBins4 |
---|
310 | distBins4 = 0 |
---|
311 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins4, grid, binWidth, left*num, right*num) |
---|
312 | endif |
---|
313 | if(ii==5) |
---|
314 | Wave distBins5 |
---|
315 | distBins5 = 0 |
---|
316 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins5, grid, binWidth, left*num, right*num) |
---|
317 | endif |
---|
318 | if(ii==6) |
---|
319 | Wave distBins6 |
---|
320 | distBins6 = 0 |
---|
321 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins6, grid, binWidth, left*num, right*num) |
---|
322 | endif |
---|
323 | if(ii==7) |
---|
324 | Wave distBins7 |
---|
325 | distBins7 = 0 |
---|
326 | ThreadStart mt,ii,binDistance_WF(xv, yv, zv, distBins7, grid, binWidth, left*num, right*num) |
---|
327 | endif |
---|
328 | |
---|
329 | left = right |
---|
330 | |
---|
331 | endfor |
---|
332 | |
---|
333 | // wait until done |
---|
334 | do |
---|
335 | variable tgs= ThreadGroupWait(mt,100) |
---|
336 | while( tgs != 0 ) |
---|
337 | variable dummy= ThreadGroupRelease(mt) |
---|
338 | mt=0 |
---|
339 | // Print "done with all threads" |
---|
340 | |
---|
341 | // then add them all back together |
---|
342 | if(nthreads == 1) |
---|
343 | distBins = distBins0 // add up each instance |
---|
344 | endif |
---|
345 | if(nthreads == 2) |
---|
346 | distBins = distBins0 + distBins1 |
---|
347 | endif |
---|
348 | if(nthreads == 3) |
---|
349 | distBins = distBins0 + distBins1 + distBins2 |
---|
350 | endif |
---|
351 | if(nthreads == 4) |
---|
352 | distBins = distBins0 + distBins1 + distBins2 + distBins3 |
---|
353 | endif |
---|
354 | if(nthreads == 5) |
---|
355 | distBins = distBins0 + distBins1 + distBins2 + distBins3 + distBins4 |
---|
356 | endif |
---|
357 | if(nthreads == 6) |
---|
358 | distBins = distBins0 + distBins1 + distBins2 + distBins3 + distBins4 + distBins5 |
---|
359 | endif |
---|
360 | if(nthreads == 7) |
---|
361 | distBins = distBins0 + distBins1 + distBins2 + distBins3 + distBins4 + distBins5 + distBins6 |
---|
362 | endif |
---|
363 | if(nthreads == 8) |
---|
364 | distBins = distBins0 + distBins1 + distBins2 + distBins3 + distBins4 + distBins5 + distBins6 + distBins7 |
---|
365 | endif |
---|
366 | |
---|
367 | // then clean up |
---|
368 | KillWaves/Z distBins0,distBins1,distBins2,distBins3 |
---|
369 | KillWaves/Z distBins4,distBins5,distBins6,distBins7 |
---|
370 | |
---|
371 | return(0) |
---|
372 | End |
---|
373 | |
---|
374 | // this is just a worker function to get the ThreadStart operation to compile |
---|
375 | ThreadSafe Function binDistance_WF(xv, yv, zv, distBins, grid, binWidth,p1,p2) |
---|
376 | Wave xv, yv, zv, distBins |
---|
377 | Variable grid, binWidth,p1,p2 |
---|
378 | |
---|
379 | Variable ret |
---|
380 | ret = binDistanceX(xv, yv, zv, distBins, grid, binWidth,p1,p2) |
---|
381 | |
---|
382 | return(0) |
---|
383 | End |
---|
384 | |
---|
385 | |
---|
386 | // support up to 8 threads at this time |
---|
387 | Function maxDistance_Threaded(xv, yv, zv) |
---|
388 | Wave xv, yv, zv |
---|
389 | |
---|
390 | Variable nthreads,mt,left,right |
---|
391 | Variable ii,num |
---|
392 | |
---|
393 | nthreads=ThreadProcessorCount |
---|
394 | |
---|
395 | if(nthreads > 8) |
---|
396 | nthreads = 8 |
---|
397 | endif |
---|
398 | |
---|
399 | mt = ThreadGroupCreate(nthreads) |
---|
400 | |
---|
401 | ii=0 |
---|
402 | left = 0 |
---|
403 | num = numpnts(xv) |
---|
404 | |
---|
405 | for(ii=0;ii<nthreads;ii+=1) |
---|
406 | |
---|
407 | // this is an even spreading of the points - not appropriate here for the triangle |
---|
408 | // Print (ii*num/nthreads),((ii+1)*num/nthreads) |
---|
409 | // ThreadStart mt,i,Cyl_PolyRadius_T(cw,yw,xw,(ii*num/nthreads),((ii+1)*num/nthreads)) |
---|
410 | |
---|
411 | // this splits up the triangle into equal area chunks trapezoid left(ii) -> right(ii) |
---|
412 | // be sure that for the last iteration of ii, right = 1 *(num) |
---|
413 | right = 1 - sqrt(1- (ii+1)/nthreads) |
---|
414 | |
---|
415 | // Print left,right |
---|
416 | |
---|
417 | ThreadStart mt,ii,maxDistance_WF(xv, yv, zv, left*num, right*num) |
---|
418 | |
---|
419 | left = right |
---|
420 | |
---|
421 | endfor |
---|
422 | |
---|
423 | // wait until done |
---|
424 | do |
---|
425 | variable tgs= ThreadGroupWait(mt,100) |
---|
426 | while( tgs != 0 ) |
---|
427 | |
---|
428 | |
---|
429 | // Get the return values, and find the maximum to return |
---|
430 | Variable maxValue = 0 |
---|
431 | |
---|
432 | for(ii=0;ii<nthreads;ii+=1) |
---|
433 | // Print ThreadReturnValue(mt,ii) |
---|
434 | maxValue = max(maxValue,ThreadReturnValue(mt,ii)) |
---|
435 | endfor |
---|
436 | |
---|
437 | // now release the threads |
---|
438 | variable dummy= ThreadGroupRelease(mt) |
---|
439 | mt=0 |
---|
440 | // Print "done with all threads" |
---|
441 | |
---|
442 | return(maxValue) |
---|
443 | End |
---|
444 | |
---|
445 | // this is just a worker function to get the ThreadStart operation to compile |
---|
446 | ThreadSafe Function maxDistance_WF(xv, yv, zv, p1, p2) |
---|
447 | Wave xv, yv, zv |
---|
448 | Variable p1,p2 |
---|
449 | |
---|
450 | Variable ret |
---|
451 | ret = maxDistanceX(xv,yv,zv,p1,p2) |
---|
452 | |
---|
453 | return(ret) |
---|
454 | End |
---|
455 | |
---|
456 | // distance separating two xyz points |
---|
457 | // (this is one of the big time-consuming steps) |
---|
458 | Function AV_Distance(x1,x2,y1,y2,z1,z2) |
---|
459 | Variable x1,x2,y1,y2,z1,z2 |
---|
460 | |
---|
461 | Variable retval |
---|
462 | retval=sqrt( (x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2 ) |
---|
463 | return(retval) |
---|
464 | End |
---|
465 | |
---|
466 | //bessel function... |
---|
467 | |
---|
468 | Function PhiQR(qval,rval) |
---|
469 | Variable qval,rval |
---|
470 | |
---|
471 | Variable retval,qr |
---|
472 | |
---|
473 | qr=qval*rval |
---|
474 | retval=(sin(qr)-qr*cos(qr))/qr/qr/qr |
---|
475 | |
---|
476 | return(3*retval) |
---|
477 | End |
---|
478 | |
---|
479 | |
---|
480 | |
---|
481 | //called from the FFT method panel |
---|
482 | // |
---|
483 | // calls the full double sum that can take the SLD wave into account, if filled |
---|
484 | // - as a result, it's slower than the binned calculation |
---|
485 | // |
---|
486 | Proc DoSpheresCalcFFTPanel(num,qMin,qMax) |
---|
487 | Variable num=100,qmin=0.004,qmax=0.5 |
---|
488 | |
---|
489 | Variable t1 |
---|
490 | String qStr="qval_full",iStr="ival_full" //default wave names, always overwritten |
---|
491 | Variable grid |
---|
492 | |
---|
493 | grid=root:FFT_T |
---|
494 | |
---|
495 | Make/O/D/N=(num) $qStr,$iStr |
---|
496 | $qStr = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
497 | |
---|
498 | Variable estTime,nx |
---|
499 | String str = "" |
---|
500 | |
---|
501 | nx = NonZeroValues(mat) |
---|
502 | |
---|
503 | estTime = EstimatedTime(nx,num,0) // 0 = XOP, 1 = no XOP |
---|
504 | sprintf str, "Estimated time for the calculation is %g seconds. Proceed?",estTime |
---|
505 | DoAlert 1,str |
---|
506 | if(V_Flag==1) //yes, proceed |
---|
507 | t1=ticks |
---|
508 | fDoCalc($qStr,$iStr,grid,0,1) |
---|
509 | // Printf "Elapsed AltiSpheres time = %g seconds\r\r",(ticks-t1)/60.15 |
---|
510 | Endif |
---|
511 | End |
---|
512 | |
---|
513 | |
---|
514 | //called from the FFT method panel |
---|
515 | // |
---|
516 | // in this method, the distances are binned as by Otto Glatter, and has been partially XOPed |
---|
517 | // |
---|
518 | Proc DoBinnedSpheresCalcFFTPanel(num,qMin,qMax) |
---|
519 | Variable num=100,qmin=0.004,qmax=0.5 |
---|
520 | |
---|
521 | Variable t1 |
---|
522 | String qStr="qval_XOP",iStr="ival_XOP" //default wave names, always overwritten |
---|
523 | Variable grid |
---|
524 | |
---|
525 | grid=root:FFT_T |
---|
526 | |
---|
527 | Make/O/D/N=(num) $qStr,$iStr |
---|
528 | $qStr = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
529 | |
---|
530 | Variable estTime,nx |
---|
531 | String str = "" |
---|
532 | |
---|
533 | nx = NonZeroValues(mat) |
---|
534 | |
---|
535 | estTime = EstimatedTime(nx,num,2) // 0 = XOP, 1 = no XOP, 2 = binned distances |
---|
536 | sprintf str, "Estimated time for the calculation is %g seconds. Proceed?",estTime |
---|
537 | DoAlert 1,str |
---|
538 | if(V_Flag==1) //yes, proceed |
---|
539 | t1=ticks |
---|
540 | fDoCalc($qStr,$iStr,grid,2,1) |
---|
541 | // Printf "Elapsed AltiSpheres time = %g seconds\r\r",(ticks-t1)/60.15 |
---|
542 | Endif |
---|
543 | End |
---|
544 | |
---|
545 | //called from the FFT method panel |
---|
546 | // |
---|
547 | // in this method, the distances are binned as by Otto Glatter, and has been partially XOPed |
---|
548 | // |
---|
549 | Proc DoBinnedSLDCalcFFTPanel(num,qMin,qMax) |
---|
550 | Variable num=100,qmin=0.004,qmax=0.5 |
---|
551 | |
---|
552 | Variable t1 |
---|
553 | String qStr="qval_SLD",iStr="ival_SLD" //default wave names, always overwritten |
---|
554 | Variable grid |
---|
555 | |
---|
556 | grid=root:FFT_T |
---|
557 | |
---|
558 | Make/O/D/N=(num) $qStr,$iStr |
---|
559 | $qStr = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
560 | |
---|
561 | Variable estTime,nx |
---|
562 | String str = "" |
---|
563 | |
---|
564 | nx = NonZeroValues(mat) |
---|
565 | |
---|
566 | estTime = EstimatedTime(nx,num,3) // 0 = XOP, 1 = no XOP, 2 = binned distances |
---|
567 | sprintf str, "Estimated time for the calculation is %g seconds. Proceed?",estTime |
---|
568 | DoAlert 1,str |
---|
569 | if(V_Flag==1) //yes, proceed |
---|
570 | t1=ticks |
---|
571 | fDoCalc($qStr,$iStr,grid,3,1) |
---|
572 | // Printf "Elapsed AltiSpheres time = %g seconds\r\r",(ticks-t1)/60.15 |
---|
573 | Endif |
---|
574 | End |
---|
575 | |
---|
576 | |
---|
577 | |
---|
578 | //////////////////// |
---|
579 | |
---|
580 | //waves must exist at this point |
---|
581 | // ival_(ext), qval_(ext) are what is passed at this point |
---|
582 | // |
---|
583 | // switch the type of calculation based on a flag |
---|
584 | // |
---|
585 | // flag = 0 = full calculation, using double sum |
---|
586 | // flag = 2 = binned distances |
---|
587 | // = 3 = binned distances with SLD |
---|
588 | // = 12 = Ken's generation of XYZ, skip my matrix filling and parsing |
---|
589 | // |
---|
590 | // |
---|
591 | Function fDoCalc(qval,ival,grid,flag,verbose) |
---|
592 | Wave qval,ival |
---|
593 | Variable grid,flag,verbose |
---|
594 | |
---|
595 | Variable t1,val |
---|
596 | WAVE mat = root:mat |
---|
597 | // convert the matrix to XYZ triplet for calculation |
---|
598 | t1=ticks |
---|
599 | |
---|
600 | if(flag == 12 || flag == 13) //skip the parsing |
---|
601 | // when using Ken's method, there is no matrix to parse, or I can put |
---|
602 | // his xyz (non-integer) onto the mat, then parse it back off (works fine, but not smart) |
---|
603 | Duplicate/O root:xOutW,x3d |
---|
604 | Duplicate/O root:yOutW,y3d |
---|
605 | Duplicate/O root:zOutW,z3d |
---|
606 | Duplicate/O root:sldW,rho3d |
---|
607 | flag -= 10 //switch to the binned method, either 2 or 3 |
---|
608 | else |
---|
609 | ParseMatrix3D_rho(mat) |
---|
610 | if(verbose) |
---|
611 | Printf "ParseMatrix3D time = %g seconds\r",(ticks-t1)/60.15 |
---|
612 | endif |
---|
613 | endif |
---|
614 | |
---|
615 | WAVE x3d=x3d |
---|
616 | WAVE y3d=y3d |
---|
617 | WAVE z3d=z3d |
---|
618 | WAVE rho3d=rho3d |
---|
619 | |
---|
620 | Variable num,nx |
---|
621 | num=numpnts(qval) |
---|
622 | nx=numpnts(x3d) |
---|
623 | |
---|
624 | if(verbose) |
---|
625 | Printf "Estimated calculation time = %g seconds for %d qvals and %d spheres\r", EstimatedTime(nx,num,flag),num,nx |
---|
626 | endif |
---|
627 | t1=ticks |
---|
628 | |
---|
629 | NVAR Tscale=root:FFT_T |
---|
630 | NVAR solventSLD = root:FFT_SolventSLD |
---|
631 | |
---|
632 | Variable vol,rval,frac |
---|
633 | rval = grid*0.62 |
---|
634 | NVAR delRho = root:FFT_delRho |
---|
635 | vol = nx*(Tscale)^3 |
---|
636 | |
---|
637 | frac = nx/DimSize(mat,0)^3 |
---|
638 | |
---|
639 | switch(flag) // numeric switch |
---|
640 | case 0: // full double sum |
---|
641 | Duplicate/O rho3D tmpRho3d |
---|
642 | tmpRho3d = rho3d - solventSLD |
---|
643 | MultiThread ival = DebyeSpheresX(qval,x3d,y3d,z3d,tmpRho3d,0.62*grid,grid) |
---|
644 | ival *= delRho*delRho |
---|
645 | ival /= vol |
---|
646 | ival *= 1e8 |
---|
647 | |
---|
648 | ival *= frac |
---|
649 | |
---|
650 | KillWaves/Z tmpRho3d |
---|
651 | break |
---|
652 | case 2: // binned distances |
---|
653 | //////improved version uses distance binning, and is now AAO |
---|
654 | // don't need to duplicate the wave since I'm passing only a single value for the SLD |
---|
655 | CalcIQRfromMat_bin(qval,ival,x3d,y3d,z3d,rho3D[0]-solventSLD, rval, grid) |
---|
656 | ival *= delRho*delRho |
---|
657 | ival /= vol |
---|
658 | ival *= 1e8 |
---|
659 | |
---|
660 | ival *= frac |
---|
661 | |
---|
662 | break |
---|
663 | case 3: // binned distances + SLD |
---|
664 | //////improved version uses distance binning, and is now AAO |
---|
665 | Duplicate/O rho3D tmpRho3d |
---|
666 | tmpRho3d = rho3d - solventSLD |
---|
667 | |
---|
668 | CalcIQRfromMat_bin_SLD(qval,ival,x3d,y3d,z3d,tmpRho3d, rval, grid) |
---|
669 | ival *= delRho*delRho |
---|
670 | ival /= vol |
---|
671 | ival *= 1e8 |
---|
672 | |
---|
673 | ival *= frac |
---|
674 | |
---|
675 | KillWaves/Z tmpRho3d |
---|
676 | break |
---|
677 | default: // optional default expression executed |
---|
678 | Print "No case matched in fDoCalc" // when no case matches |
---|
679 | endswitch |
---|
680 | |
---|
681 | if(verbose) |
---|
682 | Printf "Elapsed time for %d qvals and %d spheres = %g seconds\r",num,nx,(ticks-t1)/60.15 |
---|
683 | endif |
---|
684 | // Duplicate/O ival_XOP ival_Igor,ival_binned |
---|
685 | |
---|
686 | ////// |
---|
687 | // Printf "Estimated Igor Function time = %g seconds for %d qvals and %d spheres\r", EstimatedTime(nx,num,1),num,nx |
---|
688 | // t1=ticks |
---|
689 | // ival_Igor = CalcIQRfromMat(mat,qval,1, rval, grid) |
---|
690 | // |
---|
691 | //// vol = nx*4*Pi/3*rval*rval*rval |
---|
692 | // ival_Igor *= delRho*delRho |
---|
693 | // ival_Igor /= vol |
---|
694 | // ival_Igor *= 1e8 |
---|
695 | // |
---|
696 | // Printf "Igor function time for %d qvals and %d spheres = %g seconds\r",num,nx,(ticks-t1)/60.15 |
---|
697 | /////// |
---|
698 | return(0) |
---|
699 | End |
---|
700 | |
---|
701 | |
---|
702 | |
---|
703 | // Based on the WM procedure |
---|
704 | // RemoveNaNsXY(theXWave, theYWave) |
---|
705 | // Removes all Zeroes in an XY pair if the X wave has the value 0. |
---|
706 | // Returns the number of points removed. |
---|
707 | Function RemoveZerosXY(theXWave, theYWave) |
---|
708 | Wave theXWave |
---|
709 | Wave theYWave |
---|
710 | |
---|
711 | Variable p, numPoints, numNaNs |
---|
712 | Variable xval, yval |
---|
713 | |
---|
714 | numNaNs = 0 |
---|
715 | p = 0 // the loop index |
---|
716 | numPoints = numpnts(theXWave) // number of times to loop |
---|
717 | |
---|
718 | do |
---|
719 | xval = theXWave[p] |
---|
720 | yval = theYWave[p] |
---|
721 | if (xval == 0) //is xWave == 0? |
---|
722 | numNaNs += 1 |
---|
723 | else // if not an outlier |
---|
724 | theXWave[p - numNaNs] = xval // copy to input wave |
---|
725 | theYWave[p - numNaNs] = yval // copy to input wave |
---|
726 | endif |
---|
727 | p += 1 |
---|
728 | while (p < numPoints) |
---|
729 | |
---|
730 | // Truncate the wave |
---|
731 | DeletePoints numPoints-numNaNs, numNaNs, theXWave, theYWave |
---|
732 | |
---|
733 | return(numNaNs) |
---|
734 | End |
---|
735 | |
---|
736 | |
---|
737 | ///////// binned Debye, with multiple SLDs |
---|
738 | // as in E. Pantos et.al. J. Molec. Struct. 383 (1996) 303-308. |
---|
739 | // |
---|
740 | //calculate I(q) given a set of spheres as xyz |
---|
741 | // |
---|
742 | // this is the improved way, doing distance binning |
---|
743 | // - in this method, there can be more than one SLD (different from the solvent) |
---|
744 | // |
---|
745 | // -(done)- substantially speeded up with two XOPs that take care of the double loops |
---|
746 | // binning into the histogram is the bottleneck at this point, but I see no |
---|
747 | // easy way to make this multi-processor aware. Supposedly it should be easy |
---|
748 | // to do, but I don't see the fast way to dispatch it to threads without writing four |
---|
749 | // functions like in the MC simulation code. Maybe data folders? |
---|
750 | // |
---|
751 | // some of the work is still done in Igor, but it's the really fast stuff, after checking the timing of each step. |
---|
752 | // |
---|
753 | //---- |
---|
754 | // The bookkeeping here is a bit of a mess to keep track of the Gij binning, so here are the details. Note |
---|
755 | // that as ugly and as many loops there are in the function, the time spent in these loops |
---|
756 | // is practically nothing (much less than a second) compared to the binning. |
---|
757 | // |
---|
758 | // SLD_id : a vector with the values of the SLD that are not solvent. The point value of this wave |
---|
759 | // is used to refer to the "material" with the given SLD, such that SLD_id[index] = SLD_Value |
---|
760 | // SLDLookup : vector that does the reverse correlation to pair up the SLD with its index, such that |
---|
761 | // SLDLookup[SLD_Value] = index |
---|
762 | // psf_id_vec : a vector of the ij pairs, numbered starting from 11, 12, 13, 22, 23, 33, etc. |
---|
763 | // psf_id_mat : a matrix such that psf_id_mat[i][j] gives the INDEX of the (i+1)(j+1) PSF pair. For example, |
---|
764 | // psf_id_mat[0][2] corresponds to PSF 13, with and index (in psf_id_vec) of 2. |
---|
765 | // Nij : a vector of the number of Ni type spheres. Index matches the psf_id_vec. Values are zero |
---|
766 | // for i != j, and are the number of spheres for i==j |
---|
767 | // |
---|
768 | // binMatrix : a matrix of /N=(numBins,NumDiffPSF) that contains the Gij binned pairwise based on the SLD |
---|
769 | // the columns (numDiffPSF) are indexed to the psf_id_vec |
---|
770 | // |
---|
771 | // The Gijx and Sijx waves are calculated and saved as a function of r or q, where x is the numerical |
---|
772 | // index that corresponds to psf_id_vec. Note that the Sijx are not exactly what you expect for a partial |
---|
773 | // structure factor. Some conversion is necessary and the details are still to be worked out, but this is |
---|
774 | // all within Igor, and not in the XOP. |
---|
775 | // |
---|
776 | Function CalcIQRfromMat_bin_SLD(qW,iqr,xv,yv,zv,rho,rval,grid) |
---|
777 | Wave qW,iqr,xv,yv,zv,rho |
---|
778 | Variable rval,grid |
---|
779 | |
---|
780 | Variable num,ii,jj,kk,dik,iter,t1,np,index,nq |
---|
781 | Variable vol,dum,fQR,qval,F2Q |
---|
782 | Variable dmax,binWidth,Qmax,numBins,binIndex,val |
---|
783 | Variable rhoi,rhok,newNumBins |
---|
784 | Variable nthreads |
---|
785 | |
---|
786 | NVAR solventSLD = root:FFT_SolventSLD |
---|
787 | |
---|
788 | // t1 = ticks |
---|
789 | |
---|
790 | num=numpnts(xv) |
---|
791 | |
---|
792 | // Printf "\r\rParsing = %g seconds\r",(ticks-t1)/60.15 |
---|
793 | // t1 = ticks |
---|
794 | |
---|
795 | ////// Find maxiumum distance |
---|
796 | // write an XOP that takes the xyz and returns the square of the maximum distance, must sqrt then multiply by grid distance |
---|
797 | nthreads=ThreadProcessorCount |
---|
798 | if(nthreads == 1) |
---|
799 | dmax = maxDistanceX(xv,yv,zv,0,numpnts(xv)) |
---|
800 | else |
---|
801 | dmax = maxDistance_Threaded(xv,yv,zv) |
---|
802 | endif |
---|
803 | |
---|
804 | // dmax = maxDistanceX(xv,yv,zv,0,numpnts(xv)) |
---|
805 | dmax = sqrt(dmax) |
---|
806 | dmax *= grid |
---|
807 | // Print "dmax = ",dmax |
---|
808 | |
---|
809 | // Printf "Finding dmax XOP = %g seconds\r",(ticks-t1)/60.15 |
---|
810 | // t1 = ticks |
---|
811 | |
---|
812 | // Now since there are multiple SLDs, we need: |
---|
813 | // - a count of the number of different SLDs |
---|
814 | // - the number of different PSFs |
---|
815 | // - make the histogram matrix, keeping a lookup table of the psf_id |
---|
816 | |
---|
817 | // how many different SLDs are there? |
---|
818 | //loop through the rho wave, disregarding the solvent |
---|
819 | Duplicate/O rho tmpSLD |
---|
820 | Make/O/D/N=0 SLD_id |
---|
821 | SLD_id = 0 |
---|
822 | np = 0 |
---|
823 | do |
---|
824 | val = WaveMin(tmpSLD) |
---|
825 | if(val != solventSLD && val != 1e10) |
---|
826 | np += 1 |
---|
827 | InsertPoints numpnts(SLD_id),1,SLD_id |
---|
828 | SLD_id[np-1] = val |
---|
829 | endif |
---|
830 | tmpSLD = (tmpSLD == val) ? 1e10 : tmpSLD // set the values to 1e10 |
---|
831 | while(val != 1e10) |
---|
832 | KillWaves/Z tmpSLD |
---|
833 | |
---|
834 | Variable numDiffSLD = numpnts(SLD_id) |
---|
835 | Variable numDiffPSF, PSFIndex |
---|
836 | numDiffPSF = NumDiffSLD*(numDiffSLD + 1)/2 |
---|
837 | |
---|
838 | // make a lookup table to get from rho@xyz to the index |
---|
839 | Variable maxSLD = WaveMax(SLD_id) |
---|
840 | Make/O/D/N=(maxSLD+1) SLDlookup |
---|
841 | SLDLookup = NaN |
---|
842 | ii=0 |
---|
843 | do |
---|
844 | SLDLookup[SLD_id[ii]] = ii |
---|
845 | ii+=1 |
---|
846 | while(ii<numpnts(SLD_id)) |
---|
847 | |
---|
848 | // Printf "Find number of different SLDs = %g seconds\r",(ticks-t1)/60.15 |
---|
849 | // t1 = ticks |
---|
850 | |
---|
851 | // use a bin width Dmax / 10000 as suggested in Otto's book, pg 160 |
---|
852 | // |
---|
853 | numBins=100000 |
---|
854 | binWidth = dmax/numBins |
---|
855 | |
---|
856 | Make/O/D/N=(numBins,NumDiffPSF) binMatrix |
---|
857 | binMatrix=0 |
---|
858 | |
---|
859 | Make/O/D/N=(numDiffSLD,numDiffSLD) psf_id_mat |
---|
860 | Make/O/D/N=(numDiffPSF) psf_id_vec,Nij |
---|
861 | psf_id_mat = 0 |
---|
862 | psf_id_vec = 0 |
---|
863 | Nij = 0 |
---|
864 | |
---|
865 | index = 0 |
---|
866 | for(ii=1;ii<=numDiffSLD;ii+=1) |
---|
867 | for(kk=ii;kk<=numDiffSLD;kk+=1) |
---|
868 | //Print ii,kk |
---|
869 | psf_id_vec[index] = 10*ii+kk |
---|
870 | psf_id_mat[ii-1][kk-1] = index |
---|
871 | psf_id_mat[kk-1][ii-1] = index |
---|
872 | index += 1 |
---|
873 | endfor |
---|
874 | endfor |
---|
875 | |
---|
876 | // Printf "Set up SLD id matrix, making waves = %g seconds\r",(ticks-t1)/60.15 |
---|
877 | // t1 = ticks |
---|
878 | |
---|
879 | for(ii=0;ii<num;ii+=1) |
---|
880 | rhoi = rho[ii] |
---|
881 | // find the Nij. Not sure if these are what I really need... |
---|
882 | PSFIndex = psf_id_mat[ SLDLookup[rhoi] ][ SLDlookup[rhoi] ] |
---|
883 | Nij[PSFIndex] += 1 //these are just the Ni counts |
---|
884 | endfor |
---|
885 | |
---|
886 | // Printf "get the Ni counts = %g seconds\r",(ticks-t1)/60.15 |
---|
887 | // t1 = ticks |
---|
888 | |
---|
889 | // this is the double loop that has been XOPed |
---|
890 | // for(ii=0;ii<num;ii+=1) |
---|
891 | // for(kk=(ii+1);kk<num;kk+=1) |
---|
892 | // val = AV_Distance(xv[ii],xv[kk],yv[ii],yv[kk],zv[ii],zv[kk]) * grid |
---|
893 | // binIndex = trunc(val/binWidth-0.5) |
---|
894 | // if(binIndex > numBins -1 ) |
---|
895 | // Print "bad index" |
---|
896 | // else |
---|
897 | // //figure out which PSF the pair distance belongs to |
---|
898 | // rhoi = rho[ii] |
---|
899 | // rhok = rho[kk] |
---|
900 | // PSFIndex = psf_id_mat[ SLDLookup[rhoi] ][ SLDlookup[rhok] ] |
---|
901 | // binMatrix[binIndex][PSFIndex] += 1 |
---|
902 | // |
---|
903 | // endif |
---|
904 | // endfor |
---|
905 | // endfor |
---|
906 | |
---|
907 | // binMatrix is returned |
---|
908 | |
---|
909 | nthreads=ThreadProcessorCount |
---|
910 | if(nthreads == 1) |
---|
911 | binSLDDistanceX(xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat, grid, binWidth,0,numpnts(xv)) |
---|
912 | else |
---|
913 | binSLDDistance_SLD_Threaded(xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat, grid, binWidth) |
---|
914 | endif |
---|
915 | |
---|
916 | // Printf "binned the distances and SLDs = %g seconds\r",(ticks-t1)/60.15 |
---|
917 | // t1 = ticks |
---|
918 | |
---|
919 | // Now for each Gij |
---|
920 | // -- loop over q, calculating Sij |
---|
921 | |
---|
922 | nq = numpnts(qW) |
---|
923 | |
---|
924 | for(jj=0;jj<numDiffPSF;jj+=1) |
---|
925 | |
---|
926 | Make/O/D/N=(numBins) dist_at_bin, Gij |
---|
927 | |
---|
928 | for(ii=0;ii<numBins;ii+=1) |
---|
929 | dist_at_bin[ii] = ii*binWidth |
---|
930 | endfor |
---|
931 | |
---|
932 | Gij = binMatrix[p][jj] |
---|
933 | |
---|
934 | // remove all of the bins with zero distance, then reset the number of Bins |
---|
935 | RemoveZerosXY(Gij, dist_at_bin) |
---|
936 | |
---|
937 | Duplicate/O Iqr, Sij |
---|
938 | Sij = 0 |
---|
939 | newNumBins = numpnts(Gij) |
---|
940 | |
---|
941 | for(kk=0;kk<nq;kk+=1) |
---|
942 | qval = qW[kk] |
---|
943 | for(ii=0;ii<newNumBins;ii+=1) |
---|
944 | Sij[kk] += Gij[ii]*sinc(qval*dist_at_bin[ii]) |
---|
945 | endfor |
---|
946 | Sij[kk] *= 2 |
---|
947 | // Sij[kk] += Nij[jj] // these may not be the proper Nij |
---|
948 | endfor |
---|
949 | |
---|
950 | // keep copies before looping to the next Gij |
---|
951 | Duplicate/O Sij,$("Sij"+num2str(jj)) |
---|
952 | Duplicate/O Gij, $("Gij"+num2str(jj)) |
---|
953 | Duplicate/O dist_at_bin,$("dist_at_bin"+num2str(jj)) |
---|
954 | |
---|
955 | endfor |
---|
956 | |
---|
957 | // Printf "Calculate Sij's and Gij's = %g seconds\r",(ticks-t1)/60.15 |
---|
958 | t1 = ticks |
---|
959 | |
---|
960 | // now add up everything to get the intensity |
---|
961 | // use the psf_id_mat[][] to get the Gij index |
---|
962 | |
---|
963 | vol=4*Pi/3*rval*rval*rval |
---|
964 | Iqr = 0 |
---|
965 | |
---|
966 | for(kk=0;kk<nq;kk+=1) // loop over the q-values |
---|
967 | |
---|
968 | qval = qW[kk] |
---|
969 | fQR = PhiQR(qval,rval) |
---|
970 | |
---|
971 | for(ii=0;ii<numDiffSLD;ii+=1) |
---|
972 | index = psf_id_mat[ii][ii] |
---|
973 | |
---|
974 | F2Q = fQR*fQR*SLD_id[ii]*SLD_id[ii]*vol*vol |
---|
975 | |
---|
976 | Iqr[kk] += Nij[index]*F2Q //these are just the "ii" numbers |
---|
977 | |
---|
978 | for(jj=ii;jj<numDiffSLD;jj+=1) |
---|
979 | index = psf_id_mat[ii][jj] |
---|
980 | |
---|
981 | WAVE Sij = $("root:Sij"+num2str(index)) //switch the Sij |
---|
982 | |
---|
983 | Iqr[kk] += fQR*fQR*SLD_id[ii]*SLD_id[jj]*vol*vol*Sij[kk] //factor of 2 removed, not sure why |
---|
984 | |
---|
985 | endfor |
---|
986 | endfor |
---|
987 | |
---|
988 | endfor |
---|
989 | |
---|
990 | // Printf "Last loop to calculate I(q) = %g seconds\r",(ticks-t1)/60.15 |
---|
991 | |
---|
992 | return (0) |
---|
993 | End |
---|
994 | |
---|
995 | |
---|
996 | // support up to 8 threads at this time |
---|
997 | Function binSLDDistance_SLD_Threaded(xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat, grid, binWidth) |
---|
998 | Wave xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat |
---|
999 | Variable grid, binWidth |
---|
1000 | |
---|
1001 | Variable nthreads,mt,left,right |
---|
1002 | Variable ii,num |
---|
1003 | |
---|
1004 | nthreads=ThreadProcessorCount |
---|
1005 | |
---|
1006 | if(nthreads > 8) |
---|
1007 | nthreads = 8 |
---|
1008 | endif |
---|
1009 | |
---|
1010 | mt = ThreadGroupCreate(nthreads) |
---|
1011 | |
---|
1012 | ii=0 |
---|
1013 | left = 0 |
---|
1014 | num = numpnts(xv) |
---|
1015 | |
---|
1016 | for(ii=0;ii<nthreads;ii+=1) |
---|
1017 | Duplicate/O binMatrix $("binMatrix"+num2str(ii)) |
---|
1018 | |
---|
1019 | // this is an even spreading of the points - not appropriate here for the triangle |
---|
1020 | // Print (ii*num/nthreads),((ii+1)*num/nthreads) |
---|
1021 | // ThreadStart mt,i,Cyl_PolyRadius_T(cw,yw,xw,(ii*num/nthreads),((ii+1)*num/nthreads)) |
---|
1022 | |
---|
1023 | // this splits up the triangle into equal area chunks trapezoid left(ii) -> right(ii) |
---|
1024 | // be sure that for the last iteration of ii, right = 1 *(num) |
---|
1025 | right = 1 - sqrt(1- (ii+1)/nthreads) |
---|
1026 | |
---|
1027 | // Print left,right |
---|
1028 | |
---|
1029 | if(ii==0) |
---|
1030 | Wave binMatrix0 |
---|
1031 | binMatrix0 = 0 |
---|
1032 | //Print (ii*num/nthreads),((ii+1)*num/nthreads) |
---|
1033 | //ThreadStart mt,ii,binDistance_WF(xv, yv, zv, binMatrix0, grid, binWidth,(ii*num/nthreads),((ii+1)*num/nthreads)) |
---|
1034 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix0, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1035 | endif |
---|
1036 | if(ii==1) |
---|
1037 | Wave binMatrix1 |
---|
1038 | binMatrix1 = 0 |
---|
1039 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix1, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1040 | endif |
---|
1041 | if(ii==2) |
---|
1042 | Wave binMatrix2 |
---|
1043 | binMatrix2 = 0 |
---|
1044 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix2, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1045 | endif |
---|
1046 | if(ii==3) |
---|
1047 | Wave binMatrix3 |
---|
1048 | binMatrix3 = 0 |
---|
1049 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix3, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1050 | endif |
---|
1051 | if(ii==4) |
---|
1052 | Wave binMatrix4 |
---|
1053 | binMatrix4 = 0 |
---|
1054 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix4, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1055 | endif |
---|
1056 | if(ii==5) |
---|
1057 | Wave binMatrix5 |
---|
1058 | binMatrix5 = 0 |
---|
1059 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix5, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1060 | endif |
---|
1061 | if(ii==6) |
---|
1062 | Wave binMatrix6 |
---|
1063 | binMatrix6 = 0 |
---|
1064 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix6, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1065 | endif |
---|
1066 | if(ii==7) |
---|
1067 | Wave binMatrix7 |
---|
1068 | binMatrix7 = 0 |
---|
1069 | ThreadStart mt,ii,binDistance_SLD_WF(xv, yv, zv, rho, binMatrix7, SLDLookup, psf_id_mat, grid, binWidth, left*num, right*num) |
---|
1070 | endif |
---|
1071 | |
---|
1072 | left = right |
---|
1073 | |
---|
1074 | endfor |
---|
1075 | |
---|
1076 | // wait until done |
---|
1077 | do |
---|
1078 | variable tgs= ThreadGroupWait(mt,100) |
---|
1079 | while( tgs != 0 ) |
---|
1080 | variable dummy= ThreadGroupRelease(mt) |
---|
1081 | mt=0 |
---|
1082 | // Print "done with all threads" |
---|
1083 | |
---|
1084 | // then add them all back together |
---|
1085 | if(nthreads == 1) |
---|
1086 | binMatrix = binMatrix0 // add up each instance |
---|
1087 | endif |
---|
1088 | if(nthreads == 2) |
---|
1089 | binMatrix = binMatrix0 + binMatrix1 |
---|
1090 | endif |
---|
1091 | if(nthreads == 3) |
---|
1092 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 |
---|
1093 | endif |
---|
1094 | if(nthreads == 4) |
---|
1095 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 + binMatrix3 |
---|
1096 | endif |
---|
1097 | if(nthreads == 5) |
---|
1098 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 + binMatrix3 + binMatrix4 |
---|
1099 | endif |
---|
1100 | if(nthreads == 6) |
---|
1101 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 + binMatrix3 + binMatrix4 + binMatrix5 |
---|
1102 | endif |
---|
1103 | if(nthreads == 7) |
---|
1104 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 + binMatrix3 + binMatrix4 + binMatrix5 + binMatrix6 |
---|
1105 | endif |
---|
1106 | if(nthreads == 8) |
---|
1107 | binMatrix = binMatrix0 + binMatrix1 + binMatrix2 + binMatrix3 + binMatrix4 + binMatrix5 + binMatrix6 + binMatrix7 |
---|
1108 | endif |
---|
1109 | |
---|
1110 | // then clean up |
---|
1111 | KillWaves/Z binMatrix0,binMatrix1,binMatrix2,binMatrix3 |
---|
1112 | KillWaves/Z binMatrix4,binMatrix5,binMatrix6,binMatrix7 |
---|
1113 | |
---|
1114 | return(0) |
---|
1115 | End |
---|
1116 | |
---|
1117 | // this is just a worker function to get the ThreadStart operation to compile |
---|
1118 | ThreadSafe Function binDistance_SLD_WF(xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat, grid, binWidth, p1,p2) |
---|
1119 | Wave xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat |
---|
1120 | Variable grid, binWidth, p1,p2 |
---|
1121 | |
---|
1122 | Variable ret |
---|
1123 | ret = binSLDDistanceX(xv, yv, zv, rho, binMatrix, SLDLookup, psf_id_mat, grid, binWidth, p1,p2) |
---|
1124 | |
---|
1125 | return(0) |
---|
1126 | End |
---|