1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion=6.1 |
---|
3 | |
---|
4 | //////////////////////////////////////////////// |
---|
5 | // |
---|
6 | // This is a proof of principle to convert a structure built of spheres |
---|
7 | // into a fitting function |
---|
8 | // |
---|
9 | //////////////////////////////////////////////// |
---|
10 | |
---|
11 | Proc PlotThreeCylKR(num,qmin,qmax) |
---|
12 | Variable num=100,qmin=0.004,qmax=0.4 |
---|
13 | Prompt num "Enter number of data points for model: " |
---|
14 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
15 | Prompt qmax "Enter maximum q-value (A^-1) for model: " |
---|
16 | |
---|
17 | |
---|
18 | // make the needed waves, three rows for this case |
---|
19 | Make/O/D/N=3 xCtr_KR,yCtr_KR,zCtr_KR,rad_KR,len_KR,sph_KR,rotx_KR,roty_KR,SLD_KR |
---|
20 | |
---|
21 | make/o/D/n=(num) xwave_c3KR,ywave_c3KR |
---|
22 | xwave_c3KR = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
23 | make/o/D coef_c3KR = {0.01,40,32,26,34,26,34,1e-6,2e-6,0.01} |
---|
24 | make/o/t parameters_c3KR = {"scale","radius 1 (A)","length 1 (A)","radius 2 (A)","length 2 (A)","radius 3 (A)","length 3 (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","incoh. bkg (cm^-1)"} |
---|
25 | Edit parameters_c3KR,coef_c3KR |
---|
26 | Variable/G root:g_c3KR |
---|
27 | g_c3KR := ThreeCylKR(coef_c3KR,ywave_c3KR,xwave_c3KR) |
---|
28 | |
---|
29 | Display ywave_c3KR vs xwave_c3KR |
---|
30 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
31 | Label bottom "q (A\\S-1\\M)" |
---|
32 | Label left "Intensity (cm\\S-1\\M)" |
---|
33 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
34 | |
---|
35 | AddModelToStrings("ThreeCylKR","coef_c3KR","parameters_c3KR","c3KR") |
---|
36 | End |
---|
37 | |
---|
38 | ///////////////////////////////////////////////////////////// |
---|
39 | //// - sets up a dependency to a wrapper, not the actual SmearedModelFunction |
---|
40 | Proc PlotSmearedThreeCylKR(str) |
---|
41 | String str |
---|
42 | Prompt str,"Pick the data folder containing the resolution you want",popup,getAList(4) |
---|
43 | |
---|
44 | // if any of the resolution waves are missing => abort |
---|
45 | if(ResolutionWavesMissingDF(str)) //updated to NOT use global strings (in GaussUtils) |
---|
46 | Abort |
---|
47 | endif |
---|
48 | |
---|
49 | // make the needed waves, three rows for this case |
---|
50 | Make/O/D/N=3 xCtr_KR,yCtr_KR,zCtr_KR,rad_KR,len_KR,sph_KR,rotx_KR,roty_KR,SLD_KR |
---|
51 | |
---|
52 | SetDataFolder $("root:"+str) |
---|
53 | |
---|
54 | // Setup parameter table for model function |
---|
55 | make/o/D smear_coef_c3KR = {0.01,40,32,26,34,26,34,1e-6,2e-6,0.01} |
---|
56 | make/o/t smear_parameters_c3KR = {"scale","radius 1 (A)","length 1 (A)","radius 2 (A)","length 2 (A)","radius 3 (A)","length 3 (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","incoh. bkg (cm^-1)"} |
---|
57 | Edit smear_parameters_c3KR,smear_coef_c3KR |
---|
58 | |
---|
59 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
60 | // make extra copy of experimental q-values for easy plotting |
---|
61 | Duplicate/O $(str+"_q") smeared_c3KR,smeared_qvals |
---|
62 | SetScale d,0,0,"1/cm",smeared_c3KR |
---|
63 | |
---|
64 | Variable/G gs_c3KR=0 |
---|
65 | gs_c3KR := fSmearedThreeCylKR(smear_coef_c3KR,smeared_c3KR,smeared_qvals) //this wrapper fills the STRUCT |
---|
66 | |
---|
67 | Display smeared_c3KR vs smeared_qvals |
---|
68 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
69 | Label bottom "q (A\\S-1\\M)" |
---|
70 | Label left "Intensity (cm\\S-1\\M)" |
---|
71 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
72 | |
---|
73 | SetDataFolder root: |
---|
74 | AddModelToStrings("SmearedThreeCylKR","smear_coef_c3KR","smear_parameters_c3KR","c3KR") |
---|
75 | End |
---|
76 | |
---|
77 | // The calculation is inherently AAO, so it's all done here, not passed to another FitFunc |
---|
78 | // |
---|
79 | // not quite sure how to handle the SLDs yet, since I'm treating them as 1 or 2 digit integers |
---|
80 | // |
---|
81 | Function ThreeCylKR(cw,yw,xw) : FitFunc |
---|
82 | Wave cw,yw,xw |
---|
83 | |
---|
84 | // Variable t1=StopMSTimer(-2) |
---|
85 | |
---|
86 | //The input variables are (and output) |
---|
87 | //[0] scale |
---|
88 | //[1] cylinder RADIUS (A) |
---|
89 | //[2] total cylinder LENGTH (A) |
---|
90 | //[3] sld cylinder (A^-2) |
---|
91 | //[4] sld solvent |
---|
92 | //[5] background (cm^-1) |
---|
93 | Variable scale,delrho,bkg,sldCyl,sldSolv,ctr,fill |
---|
94 | Variable r0,r1,r2,l0,l1,l2 |
---|
95 | scale = cw[0] |
---|
96 | r0 = cw[1] |
---|
97 | l0 = cw[2] |
---|
98 | r1 = cw[3] |
---|
99 | l1 = cw[4] |
---|
100 | r2 = cw[5] |
---|
101 | l2 = cw[6] |
---|
102 | sldCyl = cw[7] |
---|
103 | sldSolv = cw[8] |
---|
104 | bkg = cw[9] |
---|
105 | |
---|
106 | |
---|
107 | // make sure all of the globals are set correctly |
---|
108 | NVAR FFT_T = root:FFT_T |
---|
109 | NVAR FFT_N = root:FFT_N |
---|
110 | NVAR FFT_SolventSLD = root:FFT_SolventSLD |
---|
111 | NVAR FFT_delRho = root:FFT_delRho //the SLD multiplier, should have been initialized to 1e-7 |
---|
112 | |
---|
113 | FFT_SolventSLD = trunc(sldSolv/FFT_delRho) //spits back an integer, maybe not correct |
---|
114 | |
---|
115 | // generate the matrix and erase it |
---|
116 | // FFT_MakeMatrixButtonProc("") |
---|
117 | // FFTEraseMatrixButtonProc("") |
---|
118 | // Wave m=root:mat |
---|
119 | |
---|
120 | // fill the matrix with solvent |
---|
121 | // FFTFillSolventMatrixProc("") |
---|
122 | |
---|
123 | // waves to pass to parsing routine |
---|
124 | WAVE xCtr_KR=root:xCtr_KR |
---|
125 | WAVE yCtr_KR=root:yCtr_KR |
---|
126 | WAVE zCtr_KR=root:zCtr_KR |
---|
127 | WAVE rad_KR=root:rad_KR |
---|
128 | WAVE len_KR=root:len_KR |
---|
129 | WAVE sph_KR=root:sph_KR |
---|
130 | WAVE rotx_KR=root:rotx_KR |
---|
131 | WAVE roty_KR=root:roty_KR |
---|
132 | WAVE SLD_KR=root:SLD_KR |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | // with the input parameters, build the structure |
---|
137 | // the first cylinder is at 0,0,0 |
---|
138 | // the second cylinder is on "top" (Z) |
---|
139 | // the third cylinder is on the "bottom" (-Z) |
---|
140 | xCtr_KR[0] = 0 |
---|
141 | yCtr_KR[0] = 0 |
---|
142 | zCtr_KR[0] = 0 |
---|
143 | rad_KR[0] = r0 |
---|
144 | len_KR[0] = l0 |
---|
145 | |
---|
146 | xCtr_KR[1] = 0 |
---|
147 | yCtr_KR[1] = 0 |
---|
148 | zCtr_KR[1] = l0/2 + l1/2 |
---|
149 | rad_KR[1] = r1 |
---|
150 | len_KR[1] = l1 |
---|
151 | |
---|
152 | xCtr_KR[2] = 0 |
---|
153 | yCtr_KR[2] = 0 |
---|
154 | zCtr_KR[2] = -(l0/2 + l2/2) |
---|
155 | rad_KR[2] = r2 |
---|
156 | len_KR[2] = l2 |
---|
157 | |
---|
158 | //no rotation here, only one SLD |
---|
159 | sph_KR = FFT_T //use the global |
---|
160 | rotx_KR = 0 |
---|
161 | roty_KR = 0 |
---|
162 | SLD_KR = trunc(sldCyl*1e6) |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | // this parses the information and generates xoutW, youtW, zoutW, sldW in the root folder |
---|
167 | KR_MultiCylinder(xCtr_KR,yCtr_KR,zCtr_KR,rad_KR,len_KR,sph_KR,rotx_KR,roty_KR,SLD_KR) |
---|
168 | |
---|
169 | |
---|
170 | // these are really just for display, or if the FFT of mat is wanted later. |
---|
171 | WAVE xoutW=root:xoutW |
---|
172 | WAVE youtW=root:youtW |
---|
173 | WAVE zoutW=root:zoutW |
---|
174 | WAVE sldW=root:sldW |
---|
175 | |
---|
176 | XYZV_FillMat(xoutW,youtW,ZoutW,sldW,1) //last 1 will erase the matrix |
---|
177 | MakeTriplet(xoutW,youtW,zoutW) |
---|
178 | |
---|
179 | |
---|
180 | |
---|
181 | // do the calculation (use the binned if only one SLD, or bin+SLD if the model requires this) |
---|
182 | fDoCalc(xw,yw,FFT_T,12,0) //the binned calculation |
---|
183 | // fDoCalc(xw,yw,FFT_T,13,0) //the binned + multiple SLD calculation |
---|
184 | |
---|
185 | // reset the volume fraction to get the proper scaling |
---|
186 | // the calculation is normalized to the volume fraction of spheres filling the matrix |
---|
187 | Variable frac |
---|
188 | Wave m=root:mat |
---|
189 | |
---|
190 | frac = VolumeFraction_Occ(m) |
---|
191 | |
---|
192 | yw /= frac |
---|
193 | yw *= scale |
---|
194 | yw += bkg |
---|
195 | |
---|
196 | // Print "elapsed time = ",(StopMSTimer(-2) - t1)/1e6 |
---|
197 | |
---|
198 | return(0) |
---|
199 | End |
---|
200 | |
---|
201 | |
---|
202 | // |
---|
203 | //// this is all there is to the smeared calculation! |
---|
204 | Function SmearedThreeCylKR(s) :FitFunc |
---|
205 | Struct ResSmearAAOStruct &s |
---|
206 | |
---|
207 | ////the name of your unsmeared model is the first argument |
---|
208 | Smear_Model_20(ThreeCylKR,s.coefW,s.xW,s.yW,s.resW) |
---|
209 | |
---|
210 | return(0) |
---|
211 | End |
---|
212 | // |
---|
213 | // |
---|
214 | ////wrapper to calculate the smeared model as an AAO-Struct |
---|
215 | //// fills the struct and calls the ususal function with the STRUCT parameter |
---|
216 | //// |
---|
217 | //// used only for the dependency, not for fitting |
---|
218 | //// |
---|
219 | Function fSmearedThreeCylKR(coefW,yW,xW) |
---|
220 | Wave coefW,yW,xW |
---|
221 | |
---|
222 | String str = getWavesDataFolder(yW,0) |
---|
223 | String DF="root:"+str+":" |
---|
224 | |
---|
225 | WAVE resW = $(DF+str+"_res") |
---|
226 | |
---|
227 | STRUCT ResSmearAAOStruct fs |
---|
228 | WAVE fs.coefW = coefW |
---|
229 | WAVE fs.yW = yW |
---|
230 | WAVE fs.xW = xW |
---|
231 | WAVE fs.resW = resW |
---|
232 | |
---|
233 | Variable err |
---|
234 | err = SmearedThreeCylKR(fs) |
---|
235 | |
---|
236 | return (0) |
---|
237 | End |
---|