1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion=6.1 |
---|
3 | |
---|
4 | // |
---|
5 | // !!! FOR THE ELLIPSOID, THE ANGLE THETA IS DEFINED FROM ???? |
---|
6 | // |
---|
7 | // The plotting macro sets up TWO dependencies |
---|
8 | // - one for the triplet calculation |
---|
9 | // - one for a matrix to display, a copy of the triplet |
---|
10 | // |
---|
11 | // For display, there are two copies of the matrix. One matrix is linear, and is a copy of the |
---|
12 | // triplet (which is ALWAYS linear). The other matrix is toggled log/lin for display |
---|
13 | // in the same way the 2D SANS data matrix is handled. |
---|
14 | // |
---|
15 | |
---|
16 | /// REQUIRES DANSE XOP for 2D FUNCTIONS |
---|
17 | |
---|
18 | // |
---|
19 | // the calculation is done as for the QxQy data set: |
---|
20 | // three waves XYZ, then converted to a matrix |
---|
21 | // |
---|
22 | Proc PlotEllipsoid2D(str) |
---|
23 | String str |
---|
24 | Prompt str,"Pick the data folder containing the 2D data",popup,getAList(4) |
---|
25 | |
---|
26 | if (!exists("Ellipsoid_2DX")) |
---|
27 | Abort "You must have the SANSAnalysis XOP installed to use 2D models" |
---|
28 | endif |
---|
29 | |
---|
30 | SetDataFolder $("root:"+str) |
---|
31 | |
---|
32 | // Setup parameter table for model function |
---|
33 | // make/O/T/N=12 parameters_Ellip2D |
---|
34 | // Make/O/D/N=12 coef_Ellip2D |
---|
35 | make/O/T/N=12 parameters_Ellip2D |
---|
36 | Make/O/D/N=12 coef_Ellip2D |
---|
37 | |
---|
38 | coef_Ellip2D[0] = 1.0 |
---|
39 | coef_Ellip2D[1] = 20.0 |
---|
40 | coef_Ellip2D[2] = 60.0 |
---|
41 | coef_Ellip2D[3] = 1.0e-6 |
---|
42 | coef_Ellip2D[4] = 6.3e-6 |
---|
43 | coef_Ellip2D[5] = 0.0 |
---|
44 | coef_Ellip2D[6] = 1.57 |
---|
45 | coef_Ellip2D[7] = 0.0 |
---|
46 | coef_Ellip2D[8] = 0.0 |
---|
47 | coef_Ellip2D[9] = 0.0 |
---|
48 | coef_Ellip2D[10] = 0.0 |
---|
49 | coef_Ellip2D[11] = 0.0 |
---|
50 | // hard-wire the number of integration points |
---|
51 | // coef_Ellip2D[12] = 10 |
---|
52 | |
---|
53 | parameters_Ellip2D[0] = "Scale" |
---|
54 | parameters_Ellip2D[1] = "Radius_a (rotation axis)" |
---|
55 | parameters_Ellip2D[2] = "Radius_b" |
---|
56 | parameters_Ellip2D[3] = "SLD cylinder (A^-2)" |
---|
57 | parameters_Ellip2D[4] = "SLD solvent" |
---|
58 | parameters_Ellip2D[5] = "Background" |
---|
59 | parameters_Ellip2D[6] = "Axis Theta" |
---|
60 | parameters_Ellip2D[7] = "Axis Phi" |
---|
61 | parameters_Ellip2D[8] = "Sigma of polydisp in R_a [Angstrom]" |
---|
62 | parameters_Ellip2D[9] = "Sigma of polydisp in R_b [Angstrom]" |
---|
63 | parameters_Ellip2D[10] = "Sigma of polydisp in Theta [rad]" |
---|
64 | parameters_Ellip2D[11] = "Sigma of polydisp in Phi [rad]" |
---|
65 | |
---|
66 | // parameters_Ellip2D[12] = "Num of polydisp points" |
---|
67 | |
---|
68 | |
---|
69 | Edit parameters_Ellip2D,coef_Ellip2D |
---|
70 | |
---|
71 | // generate the triplet representation |
---|
72 | Duplicate/O $(str+"_qx") xwave_Ellip2D |
---|
73 | Duplicate/O $(str+"_qy") ywave_Ellip2D,zwave_Ellip2D |
---|
74 | |
---|
75 | Variable/G g_Ellip2D=0 |
---|
76 | g_Ellip2D := Ellipsoid2D(coef_Ellip2D,zwave_Ellip2D,xwave_Ellip2D,ywave_Ellip2D) //AAO 2D calculation |
---|
77 | |
---|
78 | Display ywave_Ellip2D vs xwave_Ellip2D |
---|
79 | modifygraph log=0 |
---|
80 | ModifyGraph mode=3,marker=16,zColor(ywave_Ellip2D)={zwave_Ellip2D,*,*,YellowHot,0} |
---|
81 | ModifyGraph standoff=0 |
---|
82 | ModifyGraph width={Aspect,1} |
---|
83 | ModifyGraph lowTrip=0.001 |
---|
84 | Label bottom "qx (A\\S-1\\M)" |
---|
85 | Label left "qy (A\\S-1\\M)" |
---|
86 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
87 | |
---|
88 | // generate the matrix representation |
---|
89 | ConvertQxQy2Mat(xwave_Ellip2D,ywave_Ellip2D,zwave_Ellip2D,"Ellip2D_mat") |
---|
90 | Duplicate/O $"Ellip2D_mat",$"Ellip2D_lin" //keep a linear-scaled version of the data |
---|
91 | // _mat is for display, _lin is the real calculation |
---|
92 | |
---|
93 | // not a function evaluation - this simply keeps the matrix for display in sync with the triplet calculation |
---|
94 | Variable/G g_Ellip2Dmat=0 |
---|
95 | g_Ellip2Dmat := UpdateQxQy2Mat(xwave_Ellip2D,ywave_Ellip2D,zwave_Ellip2D,Ellip2D_lin,Ellip2D_mat) |
---|
96 | |
---|
97 | |
---|
98 | SetDataFolder root: |
---|
99 | AddModelToStrings("Ellipsoid2D","coef_Ellip2D","parameters_Ellip2D","Ellip2D") |
---|
100 | End |
---|
101 | |
---|
102 | |
---|
103 | // - sets up a dependency to a wrapper, not the actual SmearedModelFunction |
---|
104 | Proc PlotSmearedEllipsoid2D(str) |
---|
105 | String str |
---|
106 | Prompt str,"Pick the data folder containing the 2D data",popup,getAList(4) |
---|
107 | |
---|
108 | if (!exists("Ellipsoid_2DX")) |
---|
109 | Abort "You must have the SANSAnalysis XOP installed to use 2D models" |
---|
110 | endif |
---|
111 | |
---|
112 | SetDataFolder $("root:"+str) |
---|
113 | |
---|
114 | // Setup parameter table for model function |
---|
115 | make/O/T/N=12 smear_parameters_Ellip2D |
---|
116 | Make/O/D/N=12 smear_coef_Ellip2D |
---|
117 | |
---|
118 | smear_coef_Ellip2D[0] = 1.0 |
---|
119 | smear_coef_Ellip2D[1] = 20.0 |
---|
120 | smear_coef_Ellip2D[2] = 60.0 |
---|
121 | smear_coef_Ellip2D[3] = 1.0e-6 |
---|
122 | smear_coef_Ellip2D[4] = 6.3e-6 |
---|
123 | smear_coef_Ellip2D[5] = 0.0 |
---|
124 | smear_coef_Ellip2D[6] = 1.57 |
---|
125 | smear_coef_Ellip2D[7] = 0.0 |
---|
126 | smear_coef_Ellip2D[8] = 0.0 |
---|
127 | smear_coef_Ellip2D[9] = 0.0 |
---|
128 | smear_coef_Ellip2D[10] = 0.0 |
---|
129 | smear_coef_Ellip2D[11] = 0.0 |
---|
130 | // hard-wire the number of integration points |
---|
131 | // smear_coef_Ellip2D[12] = 10 |
---|
132 | |
---|
133 | smear_parameters_Ellip2D[0] = "Scale" |
---|
134 | smear_parameters_Ellip2D[1] = "Radius_a (rotation axis)" |
---|
135 | smear_parameters_Ellip2D[2] = "Radius_b" |
---|
136 | smear_parameters_Ellip2D[3] = "SLD cylinder (A^-2)" |
---|
137 | smear_parameters_Ellip2D[4] = "SLD solvent" |
---|
138 | smear_parameters_Ellip2D[5] = "Background" |
---|
139 | smear_parameters_Ellip2D[6] = "Axis Theta" |
---|
140 | smear_parameters_Ellip2D[7] = "Axis Phi" |
---|
141 | smear_parameters_Ellip2D[8] = "Sigma of polydisp in R_a [Angstrom]" |
---|
142 | smear_parameters_Ellip2D[9] = "Sigma of polydisp in R_b [Angstrom]" |
---|
143 | smear_parameters_Ellip2D[10] = "Sigma of polydisp in Theta [rad]" |
---|
144 | smear_parameters_Ellip2D[11] = "Sigma of polydisp in Phi [rad]" |
---|
145 | |
---|
146 | // smear_parameters_Ellip2D[12] = "Num of polydisp points" |
---|
147 | |
---|
148 | |
---|
149 | Edit smear_parameters_Ellip2D,smear_coef_Ellip2D |
---|
150 | |
---|
151 | // generate the triplet representation |
---|
152 | Duplicate/O $(str+"_qx") smeared_Ellip2D |
---|
153 | SetScale d,0,0,"1/cm",smeared_Ellip2D |
---|
154 | |
---|
155 | Variable/G gs_Ellip2D=0 |
---|
156 | gs_Ellip2D := fSmearedEllipsoid2D(smear_coef_Ellip2D,smeared_Ellip2D) //wrapper to fill the STRUCT |
---|
157 | |
---|
158 | Display $(str+"_qy") vs $(str+"_qx") |
---|
159 | modifygraph log=0 |
---|
160 | ModifyGraph mode=3,marker=16,zColor($(str+"_qy"))={smeared_Ellip2D,*,*,YellowHot,0} |
---|
161 | ModifyGraph standoff=0 |
---|
162 | ModifyGraph width={Aspect,1} |
---|
163 | ModifyGraph lowTrip=0.001 |
---|
164 | Label bottom "qx (A\\S-1\\M)" |
---|
165 | Label left "qy (A\\S-1\\M)" |
---|
166 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
167 | |
---|
168 | // generate the matrix representation |
---|
169 | Duplicate/O $(str+"_qx"), sm_qx |
---|
170 | Duplicate/O $(str+"_qy"), sm_qy // I can't use local variables in dependencies, so I need the name (that I can't get) |
---|
171 | |
---|
172 | // generate the matrix representation |
---|
173 | ConvertQxQy2Mat(sm_qx,sm_qy,smeared_Ellip2D,"sm_Ellip2D_mat") |
---|
174 | Duplicate/O $"sm_Ellip2D_mat",$"sm_Ellip2D_lin" //keep a linear-scaled version of the data |
---|
175 | // _mat is for display, _lin is the real calculation |
---|
176 | |
---|
177 | // not a function evaluation - this simply keeps the matrix for display in sync with the triplet calculation |
---|
178 | Variable/G gs_Ellip2Dmat=0 |
---|
179 | gs_Ellip2Dmat := UpdateQxQy2Mat(sm_qx,sm_qy,smeared_Ellip2D,sm_Ellip2D_lin,sm_Ellip2D_mat) |
---|
180 | |
---|
181 | SetDataFolder root: |
---|
182 | AddModelToStrings("SmearedEllipsoid2D","smear_coef_Ellip2D","smear_parameters_Ellip2D","Ellip2D") |
---|
183 | End |
---|
184 | |
---|
185 | |
---|
186 | |
---|
187 | // |
---|
188 | // Fit function that is actually a wrapper to dispatch the calculation to N threads |
---|
189 | // |
---|
190 | // nthreads is 1 or an even number, typically 2 |
---|
191 | // it doesn't matter if npt is odd. In this case, fractional point numbers are passed |
---|
192 | // and the wave indexing works just fine - I tested this with test waves of 7 and 8 points |
---|
193 | // and the points "2.5" and "3.5" evaluate correctly as 2 and 3 |
---|
194 | // |
---|
195 | Function Ellipsoid2D(cw,zw,xw,yw) : FitFunc |
---|
196 | Wave cw,zw,xw,yw |
---|
197 | |
---|
198 | #if exists("Ellipsoid_2DX") //to hide the function if XOP not installed |
---|
199 | |
---|
200 | Make/O/D/N=13 Ellip2D_tmp |
---|
201 | Ellip2D_tmp[0,11] = cw |
---|
202 | Ellip2D_tmp[12] = 25 |
---|
203 | Ellip2D_tmp[5] = 0 //pass in a zero background and add it in later |
---|
204 | |
---|
205 | MultiThread zw= Ellipsoid_2DX(Ellip2D_tmp,xw,yw) + cw[5] |
---|
206 | |
---|
207 | #endif |
---|
208 | |
---|
209 | return(0) |
---|
210 | End |
---|
211 | |
---|
212 | |
---|
213 | /////////////////////smeared functions ////////////////////// |
---|
214 | |
---|
215 | Function SmearedEllipsoid2D(s) |
---|
216 | Struct ResSmear_2D_AAOStruct &s |
---|
217 | |
---|
218 | //// non-threaded, but generic calculation |
---|
219 | //// the last param is nord |
---|
220 | // Smear_2DModel_PP(Ellipsoid2D_noThread,s,10) |
---|
221 | |
---|
222 | |
---|
223 | //// the last param is nord |
---|
224 | SmearedEllipsoid2D_THR(s,10) |
---|
225 | |
---|
226 | return(0) |
---|
227 | end |
---|
228 | |
---|
229 | // for the plot dependency only |
---|
230 | Function fSmearedEllipsoid2D(coefW,resultW) |
---|
231 | Wave coefW,resultW |
---|
232 | |
---|
233 | String str = getWavesDataFolder(resultW,0) |
---|
234 | String DF="root:"+str+":" |
---|
235 | |
---|
236 | WAVE qx = $(DF+str+"_qx") |
---|
237 | WAVE qy = $(DF+str+"_qy") |
---|
238 | WAVE qz = $(DF+str+"_qz") |
---|
239 | WAVE sQpl = $(DF+str+"_sQpl") |
---|
240 | WAVE sQpp = $(DF+str+"_sQpp") |
---|
241 | WAVE shad = $(DF+str+"_fs") |
---|
242 | |
---|
243 | STRUCT ResSmear_2D_AAOStruct s |
---|
244 | WAVE s.coefW = coefW |
---|
245 | WAVE s.zw = resultW |
---|
246 | WAVE s.xw[0] = qx |
---|
247 | WAVE s.xw[1] = qy |
---|
248 | WAVE s.qz = qz |
---|
249 | WAVE s.sQpl = sQpl |
---|
250 | WAVE s.sQpp = sQpp |
---|
251 | WAVE s.fs = shad |
---|
252 | |
---|
253 | Variable err |
---|
254 | err = SmearedEllipsoid2D(s) |
---|
255 | |
---|
256 | return (0) |
---|
257 | End |
---|
258 | |
---|
259 | // |
---|
260 | // NON-THREADED IMPLEMENTATION |
---|
261 | // -- same as threaded, but no MultiThread KW |
---|
262 | // |
---|
263 | ThreadSafe Function Ellipsoid2D_noThread(cw,zw,xw,yw) |
---|
264 | Wave cw,zw,xw,yw |
---|
265 | |
---|
266 | // Variable t1=StopMSTimer(-2) |
---|
267 | |
---|
268 | #if exists("Ellipsoid_2DX") //to hide the function if XOP not installed |
---|
269 | |
---|
270 | Make/O/D/N=13 Ellip2D_tmp |
---|
271 | Ellip2D_tmp[0,11] = cw |
---|
272 | Ellip2D_tmp[12] = 5 //use a small number of integration points since smearing is used |
---|
273 | Ellip2D_tmp[5] = 0 //pass in a zero background and add it in later |
---|
274 | |
---|
275 | zw= Ellipsoid_2DX(Ellip2D_tmp,xw,yw) + cw[5] |
---|
276 | |
---|
277 | #endif |
---|
278 | |
---|
279 | // Print "elapsed time = ",(StopMSTimer(-2) - t1)/1e6 |
---|
280 | |
---|
281 | return(0) |
---|
282 | End |
---|
283 | |
---|
284 | // |
---|
285 | // this is the threaded version, that dispatches the calculation out to threads |
---|
286 | // |
---|
287 | // must be written specific to each 2D function |
---|
288 | // |
---|
289 | Function SmearedEllipsoid2D_THR(s,nord) |
---|
290 | Struct ResSmear_2D_AAOStruct &s |
---|
291 | Variable nord |
---|
292 | |
---|
293 | String weightStr,zStr |
---|
294 | |
---|
295 | // create all of the necessary quadrature waves here - rather than inside a threadsafe function |
---|
296 | switch(nord) |
---|
297 | case 5: |
---|
298 | weightStr="gauss5wt" |
---|
299 | zStr="gauss5z" |
---|
300 | if (WaveExists($weightStr) == 0) |
---|
301 | Make/O/D/N=(nord) $weightStr,$zStr |
---|
302 | Make5GaussPoints($weightStr,$zStr) |
---|
303 | endif |
---|
304 | break |
---|
305 | case 10: |
---|
306 | weightStr="gauss10wt" |
---|
307 | zStr="gauss10z" |
---|
308 | if (WaveExists($weightStr) == 0) |
---|
309 | Make/O/D/N=(nord) $weightStr,$zStr |
---|
310 | Make10GaussPoints($weightStr,$zStr) |
---|
311 | endif |
---|
312 | break |
---|
313 | case 20: |
---|
314 | weightStr="gauss20wt" |
---|
315 | zStr="gauss20z" |
---|
316 | if (WaveExists($weightStr) == 0) |
---|
317 | Make/O/D/N=(nord) $weightStr,$zStr |
---|
318 | Make20GaussPoints($weightStr,$zStr) |
---|
319 | endif |
---|
320 | break |
---|
321 | default: |
---|
322 | Abort "Smear_2DModel_PP_Threaded called with invalid nord value" |
---|
323 | endswitch |
---|
324 | |
---|
325 | Wave/Z wt = $weightStr |
---|
326 | Wave/Z xi = $zStr // wave references to pass |
---|
327 | |
---|
328 | Variable npt=numpnts(s.xw[0]) |
---|
329 | Variable i,nthreads= ThreadProcessorCount |
---|
330 | variable mt= ThreadGroupCreate(nthreads) |
---|
331 | |
---|
332 | Variable t1=StopMSTimer(-2) |
---|
333 | |
---|
334 | for(i=0;i<nthreads;i+=1) |
---|
335 | // Print (i*npt/nthreads),((i+1)*npt/nthreads-1) |
---|
336 | ThreadStart mt,i,SmearedEllipsoid2D_T(s.coefW,s.xw[0],s.xw[1],s.qz,s.sQpl,s.sQpp,s.fs,s.zw,wt,xi,(i*npt/nthreads),((i+1)*npt/nthreads-1),nord) |
---|
337 | endfor |
---|
338 | |
---|
339 | do |
---|
340 | variable tgs= ThreadGroupWait(mt,100) |
---|
341 | while( tgs != 0 ) |
---|
342 | |
---|
343 | variable dummy= ThreadGroupRelease(mt) |
---|
344 | |
---|
345 | // comment out the threading + uncomment this for testing to make sure that the single thread works |
---|
346 | // nThreads=1 |
---|
347 | // SmearedEllipsoid2D_T(s.coefW,s.xw[0],s.xw[1],s.qz,s.sQpl,s.sQpp,s.fs,s.zw,wt,xi,(i*npt/nthreads),((i+1)*npt/nthreads-1),nord) |
---|
348 | |
---|
349 | Print "elapsed time = ",(StopMSTimer(-2) - t1)/1e6 |
---|
350 | |
---|
351 | return(0) |
---|
352 | end |
---|
353 | |
---|
354 | // |
---|
355 | // - worker function for threads of Sphere2D |
---|
356 | // |
---|
357 | ThreadSafe Function SmearedEllipsoid2D_T(coef,qxw,qyw,qzw,sxw,syw,fsw,zw,wt,xi,pt1,pt2,nord) |
---|
358 | WAVE coef,qxw,qyw,qzw,sxw,syw,fsw,zw,wt,xi |
---|
359 | Variable pt1,pt2,nord |
---|
360 | |
---|
361 | // now passed in.... |
---|
362 | // Wave wt = $weightStr |
---|
363 | // Wave xi = $zStr |
---|
364 | |
---|
365 | Variable ii,jj,kk,num |
---|
366 | Variable qx,qy,qz,qval,sx,sy,fs |
---|
367 | Variable qy_pt,qx_pt,res_x,res_y,answer,sumIn,sumOut |
---|
368 | |
---|
369 | Variable normFactor,phi,theta,maxSig,numStdDev=3 |
---|
370 | |
---|
371 | /// keep these waves local |
---|
372 | Make/O/D/N=(nord) fcnRet,xptW,res_tot,yptW |
---|
373 | |
---|
374 | // now just loop over the points as specified |
---|
375 | |
---|
376 | answer=0 |
---|
377 | |
---|
378 | Variable spl,spp,apl,app,bpl,bpp,phi_pt,qpl_pt |
---|
379 | Variable qperp_pt,phi_prime,q_prime |
---|
380 | |
---|
381 | //loop over q-values |
---|
382 | for(ii=pt1;ii<(pt2+1);ii+=1) |
---|
383 | |
---|
384 | qx = qxw[ii] |
---|
385 | qy = qyw[ii] |
---|
386 | qz = qzw[ii] |
---|
387 | qval = sqrt(qx^2+qy^2+qz^2) |
---|
388 | spl = sxw[ii] |
---|
389 | spp = syw[ii] |
---|
390 | fs = fsw[ii] |
---|
391 | |
---|
392 | normFactor = 2*pi*spl*spp |
---|
393 | |
---|
394 | phi = FindPhi(qx,qy) |
---|
395 | |
---|
396 | apl = -numStdDev*spl + qval //parallel = q integration limits |
---|
397 | bpl = numStdDev*spl + qval |
---|
398 | app = -numStdDev*spp + 0 //q_perp = 0 |
---|
399 | bpp = numStdDev*spp + 0 |
---|
400 | |
---|
401 | //make sure the limits are reasonable. |
---|
402 | if(apl < 0) |
---|
403 | apl = 0 |
---|
404 | endif |
---|
405 | // do I need to specially handle limits when phi ~ 0? |
---|
406 | |
---|
407 | |
---|
408 | sumOut = 0 |
---|
409 | for(jj=0;jj<nord;jj+=1) // call phi the "outer' |
---|
410 | qperp_pt = (xi[jj]*(bpp-app)+app+bpp)/2 //this is now q_perp |
---|
411 | |
---|
412 | sumIn=0 |
---|
413 | for(kk=0;kk<nord;kk+=1) //at phi, integrate over Qpl |
---|
414 | |
---|
415 | qpl_pt = (xi[kk]*(bpl-apl)+apl+bpl)/2 |
---|
416 | |
---|
417 | // find QxQy given Qpl and Qperp on the grid |
---|
418 | // |
---|
419 | q_prime = sqrt(qpl_pt^2+qperp_pt^2) |
---|
420 | phi_prime = phi + qperp_pt/qpl_pt |
---|
421 | FindQxQy(q_prime,phi_prime,qx_pt,qy_pt) |
---|
422 | |
---|
423 | yPtw[kk] = qy_pt //phi is the same in this loop, but qy is not |
---|
424 | xPtW[kk] = qx_pt //qx is different here too, as we're varying Qpl |
---|
425 | |
---|
426 | res_tot[kk] = exp(-0.5*( (qpl_pt-qval)^2/spl/spl + (qperp_pt)^2/spp/spp ) ) |
---|
427 | res_tot[kk] /= normFactor |
---|
428 | // res_tot[kk] *= fs |
---|
429 | |
---|
430 | endfor |
---|
431 | |
---|
432 | Ellipsoid2D_noThread(coef,fcnRet,xptw,yptw) //fcn passed in is an AAO |
---|
433 | |
---|
434 | //sumIn += wt[jj]*wt[kk]*res_tot*fcnRet[0] |
---|
435 | fcnRet *= wt[jj]*wt*res_tot |
---|
436 | // |
---|
437 | answer += (bpl-apl)/2.0*sum(fcnRet) // |
---|
438 | endfor |
---|
439 | |
---|
440 | answer *= (bpp-app)/2.0 |
---|
441 | zw[ii] = answer |
---|
442 | endfor |
---|
443 | |
---|
444 | return(0) |
---|
445 | end |
---|
446 | |
---|
447 | |
---|