1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion=6.1 |
---|
3 | |
---|
4 | //////////////////////////////////////////////////// |
---|
5 | // |
---|
6 | // calculates the scattering of a "capped cylinder" with "flat" spherical end caps |
---|
7 | // where the radius of the end cap is larger than the radius of the cylinder. |
---|
8 | // The center of the spherical end caps is within the length of the cylinder. |
---|
9 | // |
---|
10 | // a double integral is used, both using Gaussian quadrature |
---|
11 | // routines that are now included with GaussUtils |
---|
12 | // |
---|
13 | // 76 point quadrature is necessary for both quadrature calls. |
---|
14 | // |
---|
15 | // |
---|
16 | // REFERENCE: |
---|
17 | // H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. |
---|
18 | // H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata) |
---|
19 | // |
---|
20 | //////////////////////////////////////////////////// |
---|
21 | |
---|
22 | //this macro sets up all the necessary parameters and waves that are |
---|
23 | //needed to calculate the model function. |
---|
24 | // |
---|
25 | Proc PlotCappedCylinder(num,qmin,qmax) |
---|
26 | Variable num=100, qmin=.001, qmax=.7 |
---|
27 | Prompt num "Enter number of data points for model: " |
---|
28 | Prompt qmin "Enter minimum q-value (^1) for model: " |
---|
29 | Prompt qmax "Enter maximum q-value (^1) for model: " |
---|
30 | // |
---|
31 | Make/O/D/n=(num) xwave_CapCyl, ywave_CapCyl |
---|
32 | xwave_CapCyl = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
33 | Make/O/D coef_CapCyl = {1,20,400,40,1e-6,6.3e-6,0} //CH#2 |
---|
34 | make/o/t parameters_CapCyl = {"Scale Factor","cylinder radius rc (A)","cylinder length (A)","end cap radius R >= rc (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","Incoherent Bgd (cm-1)"} //CH#3 |
---|
35 | Edit parameters_CapCyl, coef_CapCyl |
---|
36 | |
---|
37 | Variable/G root:g_CapCyl |
---|
38 | g_CapCyl := CappedCylinder(coef_CapCyl, ywave_CapCyl, xwave_CapCyl) |
---|
39 | Display ywave_CapCyl vs xwave_CapCyl |
---|
40 | ModifyGraph marker=29, msize=2, mode=4 |
---|
41 | ModifyGraph log=1 |
---|
42 | Label bottom "q (A\\S-1\\M)" |
---|
43 | Label left "I(q) (cm\\S-1\\M)" |
---|
44 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
45 | |
---|
46 | AddModelToStrings("CappedCylinder","coef_CapCyl","parameters_CapCyl","CapCyl") |
---|
47 | // |
---|
48 | End |
---|
49 | |
---|
50 | |
---|
51 | // - sets up a dependency to a wrapper, not the actual SmearedModelFunction |
---|
52 | Proc PlotSmearedCappedCylinder(str) |
---|
53 | String str |
---|
54 | Prompt str,"Pick the data folder containing the resolution you want",popup,getAList(4) |
---|
55 | |
---|
56 | // if any of the resolution waves are missing => abort |
---|
57 | if(ResolutionWavesMissingDF(str)) //updated to NOT use global strings (in GaussUtils) |
---|
58 | Abort |
---|
59 | endif |
---|
60 | |
---|
61 | SetDataFolder $("root:"+str) |
---|
62 | |
---|
63 | // Setup parameter table for model function |
---|
64 | Make/O/D smear_coef_CapCyl = {1,20,400,40,1e-6,6.3e-6,0} //CH#4 |
---|
65 | make/o/t smear_parameters_CapCyl = {"Scale Factor","cylinder radius rc (A)","cylinder length (A)","end cap radius R >= rc (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","Incoherent Bgd (cm-1)"} |
---|
66 | Edit smear_parameters_CapCyl,smear_coef_CapCyl //display parameters in a table |
---|
67 | |
---|
68 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
69 | // make extra copy of experimental q-values for easy plotting |
---|
70 | Duplicate/O $(str+"_q") smeared_CapCyl,smeared_qvals // |
---|
71 | SetScale d,0,0,"1/cm",smeared_CapCyl // |
---|
72 | |
---|
73 | Variable/G gs_CapCyl=0 |
---|
74 | gs_CapCyl := fSmearedCappedCylinder(smear_coef_CapCyl,smeared_CapCyl,smeared_qvals) //this wrapper fills the STRUCT |
---|
75 | |
---|
76 | Display smeared_CapCyl vs smeared_qvals // |
---|
77 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
78 | Label bottom "q (A\\S-1\\M)" |
---|
79 | Label left "I(q) (cm\\S-1\\M)" |
---|
80 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
81 | |
---|
82 | SetDataFolder root: |
---|
83 | AddModelToStrings("SmearedCappedCylinder","smear_coef_CapCyl","smear_parameters_CapCyl","CapCyl") |
---|
84 | End |
---|
85 | |
---|
86 | |
---|
87 | |
---|
88 | //AAO version, uses XOP if available |
---|
89 | // simply calls the original single point calculation with |
---|
90 | // a wave assignment (this will behave nicely if given point ranges) |
---|
91 | Function CappedCylinder(cw,yw,xw) : FitFunc |
---|
92 | Wave cw,yw,xw |
---|
93 | |
---|
94 | #if exists("CappedCylinderX") |
---|
95 | MultiThread yw = CappedCylinderX(cw,xw) |
---|
96 | #else |
---|
97 | yw = fCappedCylinder(cw,xw) |
---|
98 | #endif |
---|
99 | return(0) |
---|
100 | End |
---|
101 | |
---|
102 | // |
---|
103 | // - a double integral - choose points wisely - 76 for both... |
---|
104 | // |
---|
105 | Function fCappedCylinder(w,x) : FitFunc |
---|
106 | Wave w |
---|
107 | Variable x |
---|
108 | // Input (fitting) variables are: |
---|
109 | //[0] scale factor |
---|
110 | //[1] cylinder radius (little r) |
---|
111 | //[2] cylinder length (big L) |
---|
112 | //[3] end cap radius (big R) |
---|
113 | //[4] sld cylinder (A^-2) |
---|
114 | //[5] sld solvent |
---|
115 | //[6] incoherent background (cm^-1) |
---|
116 | // give them nice names |
---|
117 | Variable scale,contr,bkg,inten,sldc,slds |
---|
118 | Variable len,rad,hDist,endRad |
---|
119 | scale = w[0] |
---|
120 | rad = w[1] |
---|
121 | len = w[2] |
---|
122 | endRad = w[3] |
---|
123 | sldc = w[4] |
---|
124 | slds = w[5] |
---|
125 | bkg = w[6] |
---|
126 | |
---|
127 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
128 | |
---|
129 | contr = sldc-slds |
---|
130 | |
---|
131 | Variable/G root:gDumTheta=0,root:gDumT=0 |
---|
132 | |
---|
133 | inten = IntegrateFn76(CapCyl_Outer,0,pi/2,w,x) |
---|
134 | |
---|
135 | Variable hh=abs(hdist) //need a positive h for the volume of the spherical section |
---|
136 | inten /= pi*rad*rad*len + 2*(1/3*pi*(endRad-hh)^2*(2*endRad+hh)) //divide by volume |
---|
137 | inten *= 1e8 //convert to cm^-1 |
---|
138 | inten *= contr*contr |
---|
139 | inten *= scale |
---|
140 | inten += bkg |
---|
141 | |
---|
142 | Return (inten) |
---|
143 | End |
---|
144 | |
---|
145 | // outer integral |
---|
146 | // x is the q-value |
---|
147 | Function CapCyl_Outer(w,x,dum) |
---|
148 | Wave w |
---|
149 | Variable x,dum |
---|
150 | |
---|
151 | Variable retVal |
---|
152 | Variable scale,contr,bkg,inten,sldc,slds |
---|
153 | Variable len,rad,hDist,endRad |
---|
154 | scale = w[0] |
---|
155 | rad = w[1] |
---|
156 | len = w[2] |
---|
157 | endRad = w[3] |
---|
158 | sldc = w[4] |
---|
159 | slds = w[5] |
---|
160 | bkg = w[6] |
---|
161 | |
---|
162 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
163 | |
---|
164 | NVAR dTheta = root:gDumTheta |
---|
165 | NVAR dt = root:gDumT |
---|
166 | dTheta = dum |
---|
167 | retval = IntegrateFn76(CapCyl_Inner,-hDist/endRad,1,w,x) |
---|
168 | |
---|
169 | Variable arg1,arg2,be |
---|
170 | arg1 = x*len/2*cos(dum) |
---|
171 | arg2 = x*rad*sin(dum) |
---|
172 | |
---|
173 | if(arg2 == 0) |
---|
174 | be = 0.5 |
---|
175 | else |
---|
176 | be = Besselj(1, arg2)/arg2 |
---|
177 | endif |
---|
178 | retVal += pi*rad*rad*len*sinc(arg1)*2*be |
---|
179 | |
---|
180 | retVal *= retval*sin(dum) // = |A(q)|^2*sin(theta) |
---|
181 | |
---|
182 | return(retVal) |
---|
183 | End |
---|
184 | |
---|
185 | //returns the value of the integrand of the inner integral |
---|
186 | Function CapCyl_Inner(w,x,dum) |
---|
187 | Wave w |
---|
188 | Variable x,dum |
---|
189 | |
---|
190 | Variable retVal |
---|
191 | Variable scale,contr,bkg,inten,sldc,slds |
---|
192 | Variable len,rad,hDist,endRad |
---|
193 | scale = w[0] |
---|
194 | rad = w[1] |
---|
195 | len = w[2] |
---|
196 | endRad = w[3] |
---|
197 | sldc = w[4] |
---|
198 | slds = w[5] |
---|
199 | bkg = w[6] |
---|
200 | |
---|
201 | NVAR dTheta = root:gDumTheta |
---|
202 | NVAR dt = root:gDumT |
---|
203 | dt = dum |
---|
204 | |
---|
205 | retVal = CapCyl(w,x,dt,dTheta) |
---|
206 | |
---|
207 | retVal *= 4*pi*endRad^3 |
---|
208 | |
---|
209 | return(retVal) |
---|
210 | End |
---|
211 | |
---|
212 | Function CapCyl(w,x,tt,Theta) |
---|
213 | Wave w |
---|
214 | Variable x,tt,Theta |
---|
215 | |
---|
216 | Variable val,arg1,arg2 |
---|
217 | Variable scale,contr,bkg,inten,sldc,slds |
---|
218 | Variable len,rad,hDist,endRad,be |
---|
219 | scale = w[0] |
---|
220 | rad = w[1] |
---|
221 | len = w[2] |
---|
222 | endRad = w[3] |
---|
223 | sldc = w[4] |
---|
224 | slds = w[5] |
---|
225 | bkg = w[6] |
---|
226 | |
---|
227 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
228 | |
---|
229 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2) |
---|
230 | arg2 = x*endRad*sin(theta)*sqrt(1-tt*tt) |
---|
231 | |
---|
232 | if(arg2 == 0) |
---|
233 | be = 0.5 |
---|
234 | else |
---|
235 | be = Besselj(1, arg2)/arg2 |
---|
236 | endif |
---|
237 | |
---|
238 | val = cos(arg1)*(1-tt*tt)*be |
---|
239 | |
---|
240 | return(val) |
---|
241 | end |
---|
242 | |
---|
243 | //wrapper to calculate the smeared model as an AAO-Struct |
---|
244 | // fills the struct and calls the ususal function with the STRUCT parameter |
---|
245 | // |
---|
246 | // used only for the dependency, not for fitting |
---|
247 | // |
---|
248 | Function fSmearedCappedCylinder(coefW,yW,xW) |
---|
249 | Wave coefW,yW,xW |
---|
250 | |
---|
251 | String str = getWavesDataFolder(yW,0) |
---|
252 | String DF="root:"+str+":" |
---|
253 | |
---|
254 | WAVE resW = $(DF+str+"_res") |
---|
255 | |
---|
256 | STRUCT ResSmearAAOStruct fs |
---|
257 | WAVE fs.coefW = coefW |
---|
258 | WAVE fs.yW = yW |
---|
259 | WAVE fs.xW = xW |
---|
260 | WAVE fs.resW = resW |
---|
261 | |
---|
262 | Variable err |
---|
263 | err = SmearedCappedCylinder(fs) |
---|
264 | |
---|
265 | return (0) |
---|
266 | End |
---|
267 | |
---|
268 | // this is all there is to the smeared calculation! |
---|
269 | // |
---|
270 | // 20 points should be fine here. This function is not much different than cylinders, where 20 is sufficient |
---|
271 | Function SmearedCappedCylinder(s) :FitFunc |
---|
272 | Struct ResSmearAAOStruct &s |
---|
273 | |
---|
274 | // the name of your unsmeared model (AAO) is the first argument |
---|
275 | Smear_Model_20(CappedCylinder,s.coefW,s.xW,s.yW,s.resW) |
---|
276 | |
---|
277 | return(0) |
---|
278 | End |
---|