1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion = 6.0 |
---|
3 | |
---|
4 | //////////////////////////////////////////////////// |
---|
5 | // |
---|
6 | // calculates the scattering of a convex lens. |
---|
7 | // |
---|
8 | // a double integral is used, both using Gaussian quadrature |
---|
9 | // routines that are now included with GaussUtils |
---|
10 | // |
---|
11 | // 76 point quadrature is necessary for both quadrature calls. |
---|
12 | // |
---|
13 | // |
---|
14 | // REFERENCE: |
---|
15 | // H. Kaya, J. Appl. Cryst. (2004) 37, 223-230. |
---|
16 | // H. Kaya and N-R deSouza, J. Appl. Cryst. (2004) 37, 508-509. (addenda and errata) |
---|
17 | // |
---|
18 | //////////////////////////////////////////////////// |
---|
19 | |
---|
20 | //this macro sets up all the necessary parameters and waves that are |
---|
21 | //needed to calculate the model function. |
---|
22 | // |
---|
23 | Proc PlotConvexLens(num,qmin,qmax) |
---|
24 | Variable num=100, qmin=.001, qmax=.7 |
---|
25 | Prompt num "Enter number of data points for model: " |
---|
26 | Prompt qmin "Enter minimum q-value (^1) for model: " |
---|
27 | Prompt qmax "Enter maximum q-value (^1) for model: " |
---|
28 | // |
---|
29 | Make/O/D/n=(num) xwave_ConvLens, ywave_ConvLens |
---|
30 | xwave_ConvLens = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
31 | Make/O/D coef_ConvLens = {1,20,40,1e-6,6.3e-6,0} //CH#2 |
---|
32 | make/o/t parameters_ConvLens = {"Scale Factor","cylinder radius rc (A)","end cap radius R >= rc (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","Incoherent Bgd (cm-1)"} //CH#3 |
---|
33 | Edit parameters_ConvLens, coef_ConvLens |
---|
34 | |
---|
35 | Variable/G root:g_ConvLens |
---|
36 | g_ConvLens := ConvexLens(coef_ConvLens, ywave_ConvLens, xwave_ConvLens) |
---|
37 | Display ywave_ConvLens vs xwave_ConvLens |
---|
38 | ModifyGraph marker=29, msize=2, mode=4 |
---|
39 | ModifyGraph log=1 |
---|
40 | Label bottom "q (A\\S-1\\M)" |
---|
41 | Label left "I(q) (cm\\S-1\\M)" |
---|
42 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
43 | |
---|
44 | AddModelToStrings("ConvexLens","coef_ConvLens","parameters_ConvLens","ConvLens") |
---|
45 | // |
---|
46 | End |
---|
47 | |
---|
48 | |
---|
49 | // - sets up a dependency to a wrapper, not the actual SmearedModelFunction |
---|
50 | Proc PlotSmearedConvexLens(str) |
---|
51 | String str |
---|
52 | Prompt str,"Pick the data folder containing the resolution you want",popup,getAList(4) |
---|
53 | |
---|
54 | // if any of the resolution waves are missing => abort |
---|
55 | if(ResolutionWavesMissingDF(str)) //updated to NOT use global strings (in GaussUtils) |
---|
56 | Abort |
---|
57 | endif |
---|
58 | |
---|
59 | SetDataFolder $("root:"+str) |
---|
60 | |
---|
61 | // Setup parameter table for model function |
---|
62 | Make/O/D smear_coef_ConvLens = {1,20,40,1e-6,6.3e-6,0} //CH#4 |
---|
63 | make/o/t smear_parameters_ConvLens = {"Scale Factor","cylinder radius rc (A)","end cap radius R >= rc (A)","SLD cylinder (A^-2)","SLD solvent (A^-2)","Incoherent Bgd (cm-1)"} |
---|
64 | Edit smear_parameters_ConvLens,smear_coef_ConvLens //display parameters in a table |
---|
65 | |
---|
66 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
67 | // make extra copy of experimental q-values for easy plotting |
---|
68 | Duplicate/O $(str+"_q") smeared_ConvLens,smeared_qvals // |
---|
69 | SetScale d,0,0,"1/cm",smeared_ConvLens // |
---|
70 | |
---|
71 | Variable/G gs_ConvLens=0 |
---|
72 | gs_ConvLens := fSmearedConvexLens(smear_coef_ConvLens,smeared_ConvLens,smeared_qvals) //this wrapper fills the STRUCT |
---|
73 | |
---|
74 | Display smeared_ConvLens vs smeared_qvals // |
---|
75 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
76 | Label bottom "q (A\\S-1\\M)" |
---|
77 | Label left "I(q) (cm\\S-1\\M)" |
---|
78 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
79 | |
---|
80 | SetDataFolder root: |
---|
81 | AddModelToStrings("SmearedConvexLens","smear_coef_ConvLens","smear_parameters_ConvLens","ConvLens") |
---|
82 | End |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | //AAO version, uses XOP if available |
---|
87 | // simply calls the original single point calculation with |
---|
88 | // a wave assignment (this will behave nicely if given point ranges) |
---|
89 | Function ConvexLens(cw,yw,xw) : FitFunc |
---|
90 | Wave cw,yw,xw |
---|
91 | |
---|
92 | #if exists("ConvexLensX") |
---|
93 | yw = ConvexLensX(cw,xw) |
---|
94 | #else |
---|
95 | yw = fConvexLens(cw,xw) |
---|
96 | #endif |
---|
97 | return(0) |
---|
98 | End |
---|
99 | |
---|
100 | // |
---|
101 | // - a double integral - choose points wisely - 76 for both... |
---|
102 | // |
---|
103 | Function fConvexLens(w,x) : FitFunc |
---|
104 | Wave w |
---|
105 | Variable x |
---|
106 | // Input (fitting) variables are: |
---|
107 | //[0] scale factor |
---|
108 | //[1] cylinder radius (little r) |
---|
109 | //[2] cylinder length (big L) |
---|
110 | //[3] end cap radius (big R) |
---|
111 | //[4] sld cylinder (A^-2) |
---|
112 | //[5] sld solvent |
---|
113 | //[6] incoherent background (cm^-1) |
---|
114 | // give them nice names |
---|
115 | Variable scale,contr,bkg,inten,sldc,slds |
---|
116 | Variable len,rad,hDist,endRad |
---|
117 | scale = w[0] |
---|
118 | rad = w[1] |
---|
119 | // len = w[2] |
---|
120 | endRad = w[2] |
---|
121 | sldc = w[3] |
---|
122 | slds = w[4] |
---|
123 | bkg = w[5] |
---|
124 | |
---|
125 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
126 | |
---|
127 | Make/O/D/N=7 CLens_tmp |
---|
128 | CLens_tmp[0] = w[0] |
---|
129 | CLens_tmp[1] = w[1] |
---|
130 | CLens_tmp[2] = 0.01 //length is some small number, essentially zero |
---|
131 | CLens_tmp[3] = w[2] |
---|
132 | CLens_tmp[4] = w[3] |
---|
133 | CLens_tmp[5] = w[4] |
---|
134 | CLens_tmp[6] = w[5] |
---|
135 | |
---|
136 | contr = sldc-slds |
---|
137 | |
---|
138 | Variable/G root:gDumTheta=0,root:gDumT=0 |
---|
139 | |
---|
140 | inten = IntegrateFn76(ConvLens_Outer,0,pi/2,CLens_tmp,x) |
---|
141 | |
---|
142 | Variable hh=abs(hDist) //need positive value for spherical cap volume |
---|
143 | inten /= 2*(1/3*pi*(endRad-hh)^2*(2*endRad+hh)) //divide by volume |
---|
144 | inten *= 1e8 //convert to cm^-1 |
---|
145 | inten *= contr*contr |
---|
146 | inten *= scale |
---|
147 | inten += bkg |
---|
148 | |
---|
149 | Return (inten) |
---|
150 | End |
---|
151 | |
---|
152 | // outer integral |
---|
153 | // x is the q-value |
---|
154 | Function ConvLens_Outer(w,x,dum) |
---|
155 | Wave w |
---|
156 | Variable x,dum |
---|
157 | |
---|
158 | Variable retVal |
---|
159 | Variable scale,contr,bkg,inten,sldc,slds |
---|
160 | Variable len,rad,hDist,endRad |
---|
161 | scale = w[0] |
---|
162 | rad = w[1] |
---|
163 | len = w[2] |
---|
164 | endRad = w[3] |
---|
165 | sldc = w[4] |
---|
166 | slds = w[5] |
---|
167 | bkg = w[6] |
---|
168 | |
---|
169 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
170 | |
---|
171 | NVAR dTheta = root:gDumTheta |
---|
172 | NVAR dt = root:gDumT |
---|
173 | dTheta = dum |
---|
174 | retval = IntegrateFn76(ConvLens_Inner,-hDist/endRad,1,w,x) |
---|
175 | |
---|
176 | Variable arg1,arg2 |
---|
177 | arg1 = x*len/2*cos(dum) |
---|
178 | arg2 = x*rad*sin(dum) |
---|
179 | |
---|
180 | retVal += pi*rad*rad*len*sinc(arg1)*2*Besselj(1, arg2)/arg2 |
---|
181 | |
---|
182 | retVal *= retval*sin(dum) // = |A(q)|^2*sin(theta) |
---|
183 | |
---|
184 | return(retVal) |
---|
185 | End |
---|
186 | |
---|
187 | //returns the value of the integrand of the inner integral |
---|
188 | Function ConvLens_Inner(w,x,dum) |
---|
189 | Wave w |
---|
190 | Variable x,dum |
---|
191 | |
---|
192 | Variable retVal |
---|
193 | Variable scale,contr,bkg,inten,sldc,slds |
---|
194 | Variable len,rad,hDist,endRad |
---|
195 | scale = w[0] |
---|
196 | rad = w[1] |
---|
197 | len = w[2] |
---|
198 | endRad = w[3] |
---|
199 | sldc = w[4] |
---|
200 | slds = w[5] |
---|
201 | bkg = w[6] |
---|
202 | |
---|
203 | NVAR dTheta = root:gDumTheta |
---|
204 | NVAR dt = root:gDumT |
---|
205 | dt = dum |
---|
206 | |
---|
207 | retVal = ConvLens(w,x,dt,dTheta) |
---|
208 | |
---|
209 | retVal *= 4*pi*endRad^3 |
---|
210 | |
---|
211 | return(retVal) |
---|
212 | End |
---|
213 | |
---|
214 | Function ConvLens(w,x,tt,Theta) |
---|
215 | Wave w |
---|
216 | Variable x,tt,Theta |
---|
217 | |
---|
218 | Variable val,arg1,arg2 |
---|
219 | Variable scale,contr,bkg,inten,sldc,slds |
---|
220 | Variable len,rad,hDist,endRad |
---|
221 | scale = w[0] |
---|
222 | rad = w[1] |
---|
223 | len = w[2] |
---|
224 | endRad = w[3] |
---|
225 | sldc = w[4] |
---|
226 | slds = w[5] |
---|
227 | bkg = w[6] |
---|
228 | |
---|
229 | hDist = -1*sqrt(abs(endRad^2-rad^2)) |
---|
230 | |
---|
231 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2) |
---|
232 | arg2 = x*endRad*sin(theta)*sqrt(1-tt*tt) |
---|
233 | |
---|
234 | val = cos(arg1)*(1-tt*tt)*Besselj(1,arg2)/arg2 |
---|
235 | |
---|
236 | return(val) |
---|
237 | end |
---|
238 | |
---|
239 | //wrapper to calculate the smeared model as an AAO-Struct |
---|
240 | // fills the struct and calls the ususal function with the STRUCT parameter |
---|
241 | // |
---|
242 | // used only for the dependency, not for fitting |
---|
243 | // |
---|
244 | Function fSmearedConvexLens(coefW,yW,xW) |
---|
245 | Wave coefW,yW,xW |
---|
246 | |
---|
247 | String str = getWavesDataFolder(yW,0) |
---|
248 | String DF="root:"+str+":" |
---|
249 | |
---|
250 | WAVE resW = $(DF+str+"_res") |
---|
251 | |
---|
252 | STRUCT ResSmearAAOStruct fs |
---|
253 | WAVE fs.coefW = coefW |
---|
254 | WAVE fs.yW = yW |
---|
255 | WAVE fs.xW = xW |
---|
256 | WAVE fs.resW = resW |
---|
257 | |
---|
258 | Variable err |
---|
259 | err = SmearedConvexLens(fs) |
---|
260 | |
---|
261 | return (0) |
---|
262 | End |
---|
263 | |
---|
264 | // this is all there is to the smeared calculation! |
---|
265 | // |
---|
266 | // 20 points should be fine here. This function is not much different than cylinders, where 20 is sufficient |
---|
267 | Function SmearedConvexLens(s) :FitFunc |
---|
268 | Struct ResSmearAAOStruct &s |
---|
269 | |
---|
270 | // the name of your unsmeared model (AAO) is the first argument |
---|
271 | Smear_Model_20(ConvexLens,s.coefW,s.xW,s.yW,s.resW) |
---|
272 | |
---|
273 | return(0) |
---|
274 | End |
---|