1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion = 6.0 |
---|
3 | |
---|
4 | //////////////////////////////////////////////// |
---|
5 | // This function is for the form factor of a right circular |
---|
6 | // cylinder with core/shell scattering length density profile. |
---|
7 | // Note that a different shell thickness is added on the edge of |
---|
8 | // the particle, compared to the face. |
---|
9 | // Furthermore the scattering is convoluted by a log normal (or Schultz) |
---|
10 | // distribution that creates polydispersity for the radius of the |
---|
11 | // particle core. |
---|
12 | // |
---|
13 | // 30 Apr 2003 Andrew Nelson |
---|
14 | // |
---|
15 | // 17 MAY 2006 SRK - changed to normalize to total particle dimensions |
---|
16 | // (core+shell) |
---|
17 | // 7th Jan 2007 DS Core-shell to include varying SLD in rim and face: Model 2 |
---|
18 | // Jan 2009 ACH - changed to run in Igor 6.03 |
---|
19 | // |
---|
20 | // May 2009 AJJ - Renamed to PolyCoreBicelle_v40.ipf |
---|
21 | ///////////////////////////////////////////////////////////////// |
---|
22 | |
---|
23 | Proc PlotPolyCoreBicelle(num,qmin,qmax) |
---|
24 | Variable num=100,qmin=0.001,qmax=0.7 |
---|
25 | Prompt num "Enter number of data points for model: " |
---|
26 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
27 | Prompt qmax "Enter maximum q-value (A^-1) for model: " |
---|
28 | |
---|
29 | make/o/d/n=(num) xwave_PCBicelle,ywave_PCBicelle |
---|
30 | xwave_PCBicelle = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
31 | make/o/d coef_PCBicelle = {0.01,150,0.10,10,20.,10.,4.0e-6, 1.0e-6,2.0e-6,4.0e-6,0.001} |
---|
32 | make/o/t parameters_PCBicelle = {"scale","mean CORE radius (A)","radial polydispersity (sigma)","CORE length (A)","radial shell thickness (A)","face shell thickness (A)","SLD core (A^-2)","SLD face (A^-2)","SLD rim(A^-2)","SLD solvent (A^-2)","incoh. bkg (cm^-1)"} |
---|
33 | Edit/W=(410,44,757,306) parameters_PCBicelle,coef_PCBicelle |
---|
34 | ModifyTable width(parameters_PCBicelle)=162 |
---|
35 | |
---|
36 | Variable/G root:g_PCBicellee |
---|
37 | g_PCBicelle := PolyCoreBicelle(coef_PCBicelle,ywave_PCBicelle,xwave_PCBicelle) |
---|
38 | Display ywave_PCBicelle vs xwave_PCBicelle |
---|
39 | ModifyGraph log=1, marker=29,msize=2,mode=4 |
---|
40 | Label bottom "q (A\\S-1\\M)" |
---|
41 | Label left "Intensity (cm\\S-1\\M)" |
---|
42 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
43 | |
---|
44 | AddModelToStrings("PolyCoreBicelle","coef_PCBicelle","Bicelle") |
---|
45 | End |
---|
46 | |
---|
47 | |
---|
48 | Proc PlotSmearedPolyCoreBicelle(str) |
---|
49 | String str |
---|
50 | Prompt str,"Pick the data folder containing the resolution you want",popup,getAList(4) |
---|
51 | //no input parameters necessary, it MUST use the experimental q-values |
---|
52 | // from the experimental data read in from an AVE/QSIG data file |
---|
53 | |
---|
54 | // if no gQvals wave, data must not have been loaded => abort |
---|
55 | if(ResolutionWavesMissingDF(str)) //updated to NOT use global strings (in GaussUtils) |
---|
56 | Abort |
---|
57 | endif |
---|
58 | |
---|
59 | SetDataFolder $("root:"+str) |
---|
60 | |
---|
61 | // Setup parameter table for model function |
---|
62 | make/o/d smear_coef_PCBicelle = {0.01,150,0.10,10,20.,10.,4.0e-6,1.0e-6,2.0e-6,4.0e-6,0.001} |
---|
63 | make/o/t smear_parameters_PCBicelle = {"scale","mean CORE radius (A)","radial polydispersity (sigma)","CORE length (A)","radial shell thickness (A)","face shell thickness (A)","SLD core (A^-2)","SLD face (A^-2)","SLD rim(A^-2)","SLD solvent (A^-2)","incoh. bkg (cm^-1)"} |
---|
64 | Edit smear_parameters_PCBicelle,smear_coef_PCBicelle |
---|
65 | |
---|
66 | // output smeared intensity wave, dimensions are identical to experimental QSIG values |
---|
67 | // make extra copy of experimental q-values for easy plotting |
---|
68 | |
---|
69 | Duplicate/O $(str+"_q") smeared_PCBicelle,smeared_qvals |
---|
70 | SetScale d,0,0,"1/cm",smeared_PCBicelle |
---|
71 | |
---|
72 | Variable/G gs_PCBicelle=0 |
---|
73 | gs_PCBicelle := fSmearedPolyCoreBicelle(smear_coef_PCBicelle,smeared_PCBicelle,smeared_qvals) |
---|
74 | |
---|
75 | Display smeared_PCBicelle vs smeared_qvals |
---|
76 | ModifyGraph log=1,marker=29,msize=2,mode=4 |
---|
77 | Label bottom "q (A\\S-1\\M)" |
---|
78 | Label left "Intensity (cm\\S-1\\M)" |
---|
79 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
80 | |
---|
81 | SetDataFolder root: |
---|
82 | AddModelToStrings("SmearedPolyCoreBicelle","smear_coef_PCBicelle","Bicelle") |
---|
83 | End |
---|
84 | /////////////////////////////////////////////////////////////////////////////// |
---|
85 | // unsmeared model calculation: function integrates for a polydisperse radius. |
---|
86 | // Relies on the following two functions to return the monodisperse form factor. |
---|
87 | /////////////////////////////////////////////////////////////////////////////// |
---|
88 | Function PolyCoreBicelle(cw,yw,xw) : FitFunc |
---|
89 | Wave cw,yw,xw |
---|
90 | |
---|
91 | #if exists("PolyCoreBicelleX") |
---|
92 | yw = PolyCoreBicelleX(cw,xw) |
---|
93 | #else |
---|
94 | yw = fPolyCoreBicelle(cw,xw) |
---|
95 | #endif |
---|
96 | return(0) |
---|
97 | End |
---|
98 | |
---|
99 | Function fPolyCoreBicelle(w,x) : FitFunc |
---|
100 | Wave w |
---|
101 | Variable x |
---|
102 | |
---|
103 | //The input variables are (and output) |
---|
104 | //[0] scale |
---|
105 | //[1] cylinder CORE RADIUS (A) |
---|
106 | //[2] radial polydispersity (sigma) |
---|
107 | //[3] cylinder CORE LENGTH (A) |
---|
108 | //[4] radial shell Thickness (A) |
---|
109 | //[5] face shell Thickness (A) |
---|
110 | //[6] core SLD (A^-2) |
---|
111 | //[7] face SLD (A^-2) |
---|
112 | //[8] rim SLD (A^-2) |
---|
113 | //[9] solvent SLD (A^-2) |
---|
114 | //[10] background (cm^-1) |
---|
115 | Variable scale,length,sigma,bkg,radius,radthick,facthick,rhoc,rhoh, rhor, rhosolv |
---|
116 | Variable fc, vcyl,qq |
---|
117 | Variable nord,ii,va,vb,summ,yyy,rad,AR,lgAR,zed,Rsqr,lgRsqr,Rsqrsumm,Rsqryyy,tot |
---|
118 | String weightStr,zStr |
---|
119 | scale = w[0] |
---|
120 | radius = w[1] |
---|
121 | sigma = w[2] //sigma is the standard mean deviation |
---|
122 | length = w[3] |
---|
123 | radthick = w[4] |
---|
124 | facthick= w[5] |
---|
125 | rhoc = w[6] |
---|
126 | rhoh = w[7] |
---|
127 | rhor=w[8] |
---|
128 | rhosolv = w[9] |
---|
129 | bkg = w[10] |
---|
130 | |
---|
131 | weightStr = "gauss20wt" |
---|
132 | zStr = "gauss20z" |
---|
133 | |
---|
134 | // if wt,z waves don't exist, create them |
---|
135 | |
---|
136 | if (WaveExists($weightStr) == 0) // wave reference is not valid, |
---|
137 | Make/D/N=20 $weightStr,$zStr |
---|
138 | Wave w20 = $weightStr |
---|
139 | Wave z20 = $zStr // wave references to pass |
---|
140 | Make20GaussPoints(w20,z20) |
---|
141 | else |
---|
142 | if(exists(weightStr) > 1) |
---|
143 | Abort "wave name is already in use" // execute if condition is false |
---|
144 | endif |
---|
145 | Wave w20 = $weightStr |
---|
146 | Wave z20 = $zStr |
---|
147 | endif |
---|
148 | |
---|
149 | ///////////////////////////////////////////////////////////////////////// |
---|
150 | // This integration loop is for the radial polydispersity. |
---|
151 | // The loop uses values from cylintegration to average |
---|
152 | // the scattering over a radial size distribution. |
---|
153 | ///////////////////////////////////////////////////////////////////////// |
---|
154 | |
---|
155 | nord = 20 |
---|
156 | va = exp(ln(radius)-(4.*sigma)) |
---|
157 | if (va<0) |
---|
158 | va=0 //to avoid numerical error when va<0 (-ve r value) |
---|
159 | endif |
---|
160 | vb = exp(ln(radius)+(4.*sigma)) |
---|
161 | |
---|
162 | // evaluate at Gauss points |
---|
163 | // remember to index from 0,size-1 |
---|
164 | qq = x |
---|
165 | summ = 0.0 // initialize integral |
---|
166 | Rsqrsumm = 0.0 |
---|
167 | |
---|
168 | ii=0 |
---|
169 | do |
---|
170 | // Using 20 Gauss points |
---|
171 | rad = ( z20[ii]*(vb-va) + vb + va )/2.0 //make distribution points |
---|
172 | |
---|
173 | AR=(1/(rad*sigma*sqrt(2*Pi)))*exp(-(0.5*((ln(radius/rad))/sigma)*((ln(radius/rad))/sigma))) |
---|
174 | |
---|
175 | yyy = w20[ii] * AR * BicelleIntegration(qq,rad,radthick,facthick,rhoc,rhoh,rhor,rhosolv,length) |
---|
176 | Rsqryyy= w20[ii] * AR * (rad+radthick)*(rad+radthick) //SRK normalize to total dimensions |
---|
177 | |
---|
178 | summ += yyy |
---|
179 | Rsqrsumm += Rsqryyy |
---|
180 | ii+=1 |
---|
181 | while (ii<nord) // end of loop over quadrature points |
---|
182 | |
---|
183 | // calculate value of integral to return |
---|
184 | fc = (vb-va)/2.0*summ |
---|
185 | Rsqr=(vb-va)/2.0*Rsqrsumm |
---|
186 | |
---|
187 | //NOTE that for absolute intensity scaling you need to multiply by the |
---|
188 | // number density of particles. This is the vol frac of core particles |
---|
189 | // divided by the core volume. |
---|
190 | vcyl=Pi*Rsqr*(length+2*facthick) //SRK normalize to total dimensions |
---|
191 | fc /= vcyl |
---|
192 | |
---|
193 | //convert to [cm-1] |
---|
194 | fc *= 1.0e8 |
---|
195 | //Scale |
---|
196 | fc *= scale //scale will be the volume fraction of core particles. |
---|
197 | // add in the incoherent background |
---|
198 | fc += bkg |
---|
199 | |
---|
200 | Return (fc) |
---|
201 | End |
---|
202 | |
---|
203 | //////////////////////////////////////////////////////////////////////////// |
---|
204 | //BicelleIntegration calculates the Form factor for the Bicelle core shell cylinder |
---|
205 | //////////////////////////////////////////////////////////////////////////// |
---|
206 | Function BicelleIntegration(qq,rad,radthick,facthick,rhoc, rhoh, rhor, rhosolv, length) |
---|
207 | Variable qq,rad,radthick,facthick,rhoc,rhoh,rhor,rhosolv,length |
---|
208 | Variable answer,halfheight |
---|
209 | Variable nord,ii,va,vb,summ,yyy,zi |
---|
210 | String weightStr,zStr |
---|
211 | |
---|
212 | weightStr = "gauss76wt" |
---|
213 | zStr = "gauss76z" |
---|
214 | |
---|
215 | // if wt,z waves don't exist, create them |
---|
216 | // 20 Gauss points is not enough for cylinder calculation |
---|
217 | |
---|
218 | if (WaveExists($weightStr) == 0) // wave reference is not valid, |
---|
219 | Make/D/N=76 $weightStr,$zStr |
---|
220 | Wave w76 = $weightStr |
---|
221 | Wave z76 = $zStr // wave references to pass |
---|
222 | Make76GaussPoints(w76,z76) |
---|
223 | else |
---|
224 | if(exists(weightStr) > 1) |
---|
225 | Abort "wave name is already in use" |
---|
226 | endif |
---|
227 | Wave w76 = $weightStr |
---|
228 | Wave z76 = $zStr |
---|
229 | endif |
---|
230 | |
---|
231 | // set up the integration end points |
---|
232 | nord = 76 |
---|
233 | va = 0 |
---|
234 | vb = Pi/2 |
---|
235 | halfheight = length/2.0 |
---|
236 | |
---|
237 | // evaluate at Gauss points |
---|
238 | // remember to index from 0,size-1 |
---|
239 | |
---|
240 | summ = 0.0 // initialize integral |
---|
241 | ii=0 |
---|
242 | do |
---|
243 | // Using 76 Gauss points |
---|
244 | zi = ( z76[ii]*(vb-va) + vb + va )/2.0 |
---|
245 | yyy = w76[ii] * BicelleKernel(qq, rad, radthick, facthick, rhoc,rhoh, rhor,rhosolv, halfheight, zi) |
---|
246 | summ += yyy |
---|
247 | ii+=1 |
---|
248 | while(ii<nord) // end of loop over quadrature points |
---|
249 | |
---|
250 | // calculate value of integral to return |
---|
251 | answer = (vb-va)/2.0*summ |
---|
252 | Return (answer) |
---|
253 | |
---|
254 | End //End of function cylintegration |
---|
255 | |
---|
256 | //////////////////////////////////////////////////////////////////////// |
---|
257 | // F(qq, rcore, thick, rhoc,rhos,rhosolv, length, zi) This returns the |
---|
258 | // arguments used for the integration over theta for orientational average |
---|
259 | //////////////////////////////////////////////////////////////////////// |
---|
260 | Function BicelleKernel(qq, rad, radthick, facthick, rhoc,rhoh, rhor,rhosolv, length, dum) |
---|
261 | Variable qq, rad, radthick, facthick, rhoc,rhoh,rhor,rhosolv, length, dum |
---|
262 | |
---|
263 | // qq is the q-value for the calculation (1/A) |
---|
264 | // radius is the core radius of the cylinder (A) |
---|
265 | // radthick and facthick are the radial and face layer thicknesses |
---|
266 | // rho(n) are the respective SLD's |
---|
267 | // length is the *Half* CORE-LENGTH of the cylinder |
---|
268 | // dum is the dummy variable for the integration (theta) |
---|
269 | |
---|
270 | Variable dr1,dr2, dr3, besarg1,besarg2, vol1,vol2, vol3,sinarg1,sinarg2,t1,t2,t3, retval //Local variables |
---|
271 | |
---|
272 | dr1 = rhoc-rhoh |
---|
273 | dr2 = rhor-rhosolv |
---|
274 | dr3= rhoh-rhor |
---|
275 | vol1 = Pi*rad*rad*(2*length) |
---|
276 | vol2 = Pi*(rad+radthick)*(rad+radthick)*(2*length+2*facthick) |
---|
277 | vol3= Pi*(rad)*(rad)*(2*length+2*facthick) |
---|
278 | besarg1 = qq*rad*sin(dum) |
---|
279 | besarg2 = qq*(rad+radthick)*sin(dum) |
---|
280 | sinarg1 = qq*length*cos(dum) |
---|
281 | sinarg2 = qq*(length+facthick)*cos(dum) |
---|
282 | |
---|
283 | t1 = 2*vol1*dr1*sin(sinarg1)/sinarg1*bessJ(1,besarg1)/besarg1 |
---|
284 | t2 = 2*vol2*dr2*sin(sinarg2)/sinarg2*bessJ(1,besarg2)/besarg2 |
---|
285 | t3 = 2*vol3*dr3*sin(sinarg2)/sinarg2*bessJ(1,besarg1)/besarg1 |
---|
286 | |
---|
287 | retval = ((t1+t2+t3)^2)*sin(dum) |
---|
288 | return retval |
---|
289 | |
---|
290 | End |
---|
291 | |
---|
292 | // this is all there is to the smeared calculation! |
---|
293 | Function fSmearedPolyCoreBicelle(coefW,yW,xW) |
---|
294 | Wave coefW,yW,xW |
---|
295 | |
---|
296 | String str = getWavesDataFolder(yW,0) |
---|
297 | String DF="root:"+str+":" |
---|
298 | |
---|
299 | WAVE resW = $(DF+str+"_res") |
---|
300 | |
---|
301 | STRUCT ResSmearAAOStruct fs |
---|
302 | WAVE fs.coefW = coefW |
---|
303 | WAVE fs.yW = yW |
---|
304 | WAVE fs.xW = xW |
---|
305 | WAVE fs.resW = resW |
---|
306 | |
---|
307 | Variable err |
---|
308 | err = SmearedPolyCoreBicelle(fs) |
---|
309 | |
---|
310 | return (0) |
---|
311 | End |
---|
312 | |
---|
313 | // this is all there is to the smeared calculation! |
---|
314 | Function SmearedPolyCoreBicelle(s) :FitFunc |
---|
315 | Struct ResSmearAAOStruct &s |
---|
316 | |
---|
317 | // the name of your unsmeared model (AAO) is the first argument |
---|
318 | Smear_Model_20(PolyCoreBicelle,s.coefW,s.xW,s.yW,s.resW) |
---|
319 | |
---|
320 | return(0) |
---|
321 | End |
---|
322 | |
---|