1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma IgorVersion=6.1 |
---|
3 | |
---|
4 | ///////////////////////////////////////////// |
---|
5 | // |
---|
6 | // One-Yukawa and Two-Yukawa strucutre factors |
---|
7 | // Yun Liu, Wei-Ren Chen, and Sow-Hsin Chen, J. Chem. Phys. 122 (2005) 044507. |
---|
8 | // |
---|
9 | // |
---|
10 | // Converted from Matlab to C by Marcus Hennig on 5/12/10 |
---|
11 | // |
---|
12 | // Converted to Igor XOP - SRK July 2010 |
---|
13 | // -- There are many external calls and allocation/deallocation of memory, so the XOP is NOT THREADED |
---|
14 | // -- The function calculation is inherently AAO, so this XOP definition is DIFFERENT than |
---|
15 | // all of the standard fitting functions. |
---|
16 | // -- so be sure that the P*S implementations are not threaded - although P(q) can be threaded |
---|
17 | // |
---|
18 | // *** passing in Z values of zero can cause the XOP to crash. test for them here and send good values. |
---|
19 | // -- the XOP will be modified to handle this and noted here when it is done. 0.001 seems to be OK |
---|
20 | // as a low value. |
---|
21 | // -- for OneYukawa, 0.1 seems to be a reasonable minimum |
---|
22 | // |
---|
23 | // - remember that the dimensionless Q variable is Q*diameter |
---|
24 | // |
---|
25 | // |
---|
26 | // conversion to Igor from the c-code was not terribly painful, and very useful for debugging. |
---|
27 | // |
---|
28 | // |
---|
29 | // |
---|
30 | // as of September 2010: |
---|
31 | // |
---|
32 | // the one-component has not been tested at all |
---|
33 | // |
---|
34 | // -- the two component result nearly matches the result that Yun gets. I do need to relax the criteria for |
---|
35 | // rejecting solutions, however. The XOP code rejects solutions that Yun considers "good". I guess I |
---|
36 | // need all of the intermediate values (polynomial coefficients, solution vectors, etc.). Other than some of the |
---|
37 | // numerical values not matching up - the output S(q) looks to be correct. |
---|
38 | // |
---|
39 | // -- also, for some cases, the results are VERY finicky - ususally there is a threshold value say, in Z, where |
---|
40 | // going beyond that value is unstable. Here, in can be a bit random as to which values works and which do not. |
---|
41 | // It must be hitting some strange zeros in the functions. |
---|
42 | // |
---|
43 | // |
---|
44 | // TO ADD: |
---|
45 | // |
---|
46 | // x- a mechanism for plotting the potential, so that users have a good handle on what the parameters actually mean. |
---|
47 | // |
---|
48 | // |
---|
49 | ///////////////////////////////////////////// |
---|
50 | |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | Proc PlotOneYukawa(num,qmin,qmax) |
---|
55 | Variable num=200,qmin=0.001,qmax=0.5 |
---|
56 | Prompt num "Enter number of data points for model: " |
---|
57 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
58 | Prompt qmax "Enter maximum q-value (A^-1) for model: " |
---|
59 | |
---|
60 | Make/O/D/n=(num) xwave_1yuk,ywave_1yuk |
---|
61 | xwave_1yuk = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
62 | Make/O/D coef_1yuk = {0.1,50,-1,10} |
---|
63 | make/o/t parameters_1yuk = {"volume fraction","Radius (A)","scale, K","charge, Z"} |
---|
64 | Edit parameters_1yuk,coef_1yuk |
---|
65 | Variable/G root:g_1yuk |
---|
66 | g_1yuk := OneYukawa(coef_1yuk,ywave_1yuk,xwave_1yuk) |
---|
67 | // g_1yuk := OneYukawaX(coef_1yuk,xwave_1yuk,ywave_1yuk) //be sure to have x and y in the correct order |
---|
68 | Display ywave_1yuk vs xwave_1yuk |
---|
69 | ModifyGraph marker=29,msize=2,mode=4 |
---|
70 | Label bottom "q (A\\S-1\\M)" |
---|
71 | Label left "Structure Factor" |
---|
72 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
73 | |
---|
74 | AddModelToStrings("OneYukawa","coef_1yuk","parameters_1yuk","1yuk") |
---|
75 | End |
---|
76 | |
---|
77 | //AAO version |
---|
78 | Function OneYukawa(cw,yw,xw) : FitFunc |
---|
79 | Wave cw,yw,xw |
---|
80 | |
---|
81 | if(abs(cw[3]) < 0.1) |
---|
82 | cw[3] = 0.1 |
---|
83 | endif |
---|
84 | |
---|
85 | #if exists("OneYukawaX") |
---|
86 | OneYukawaX(cw,xw,yw) |
---|
87 | #else |
---|
88 | yw = 0 |
---|
89 | #endif |
---|
90 | return(0) |
---|
91 | End |
---|
92 | |
---|
93 | |
---|
94 | // no igor code, return 0 |
---|
95 | // |
---|
96 | Function fOneYukawa(w,x) : FitFunc |
---|
97 | Wave w |
---|
98 | Variable x |
---|
99 | |
---|
100 | return (0) |
---|
101 | End |
---|
102 | |
---|
103 | ////////////////////////////////////////////////////////////// |
---|
104 | Proc PlotTwoYukawa(num,qmin,qmax) |
---|
105 | Variable num=200,qmin=0.001,qmax=0.5 |
---|
106 | Prompt num "Enter number of data points for model: " |
---|
107 | Prompt qmin "Enter minimum q-value (A^-1) for model: " |
---|
108 | Prompt qmax "Enter maximum q-value (A^-1) for model: " |
---|
109 | |
---|
110 | declare2YGlobals() //only necessary if Igor code is used. Not needed if XOP code is used. |
---|
111 | |
---|
112 | Make/O/D/n=(num) xwave_2yuk,ywave_2yuk |
---|
113 | xwave_2yuk = alog(log(qmin) + x*((log(qmax)-log(qmin))/num)) |
---|
114 | Make/O/D coef_2yuk = {0.2,50,6,10,-1,2} |
---|
115 | make/o/t parameters_2yuk = {"volume fraction","Radius (A)","scale, K1","charge, Z1","scale, K2","charge, Z2"} |
---|
116 | Edit parameters_2yuk,coef_2yuk |
---|
117 | Variable/G root:g_2yuk |
---|
118 | g_2yuk := TwoYukawa(coef_2yuk,ywave_2yuk,xwave_2yuk) |
---|
119 | Display ywave_2yuk vs xwave_2yuk |
---|
120 | ModifyGraph marker=29,msize=2,mode=4 |
---|
121 | Label bottom "q (A\\S-1\\M)" |
---|
122 | Label left "Structure Factor" |
---|
123 | AutoPositionWindow/M=1/R=$(WinName(0,1)) $WinName(0,2) |
---|
124 | |
---|
125 | AddModelToStrings("TwoYukawa","coef_2yuk","parameters_2yuk","2yuk") |
---|
126 | |
---|
127 | End |
---|
128 | |
---|
129 | |
---|
130 | //AAO version |
---|
131 | Function TwoYukawa(cw,yw,xw) : FitFunc |
---|
132 | Wave cw,yw,xw |
---|
133 | |
---|
134 | if(abs(cw[2]) < 0.001) |
---|
135 | cw[2] = 0.001 |
---|
136 | endif |
---|
137 | if(abs(cw[3]) < 0.001) |
---|
138 | cw[3] = 0.001 |
---|
139 | endif |
---|
140 | if(abs(cw[4]) < 0.001) |
---|
141 | cw[4] = 0.001 |
---|
142 | endif |
---|
143 | if(abs(cw[5]) < 0.001) |
---|
144 | cw[5] = 0.001 |
---|
145 | endif |
---|
146 | |
---|
147 | |
---|
148 | #if exists("TwoYukawaX") |
---|
149 | TwoYukawaX(cw,xw,yw) |
---|
150 | #else |
---|
151 | fTwoYukawa(cw,xw,yw) |
---|
152 | #endif |
---|
153 | return(0) |
---|
154 | End |
---|
155 | |
---|
156 | Proc TestTheIgor2YUK() |
---|
157 | //if the regular 2-yukawa procedure is already plotted |
---|
158 | // -- then append it to thte graph yourself |
---|
159 | Duplicate/O ywave_2yuk ywave_2yuk_Igor |
---|
160 | Variable/G root:g_2yuk_Igor=0 |
---|
161 | g_2yuk_Igor := fTwoYukawa(coef_2yuk,xwave_2yuk,ywave_2yuk_Igor) |
---|
162 | End |
---|
163 | |
---|
164 | // |
---|
165 | Function fTwoYukawa(cw,xw,yw) : FitFunc |
---|
166 | Wave cw,xw,yw |
---|
167 | |
---|
168 | Variable Z1, Z2, K1, K2, phi,radius |
---|
169 | phi = cw[0] |
---|
170 | radius = cw[1] |
---|
171 | K1 = cw[2] |
---|
172 | Z1 = cw[3] |
---|
173 | K2 = cw[4] |
---|
174 | Z2 = cw[5] |
---|
175 | |
---|
176 | Variable a,b,c1,c2,d1,d2 |
---|
177 | |
---|
178 | Variable ok,check,prnt |
---|
179 | prnt = 0 //print out intermediates |
---|
180 | |
---|
181 | ok = TY_SolveEquations( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2, prnt ) // a,b,c1,c2,d1,d2 are returned |
---|
182 | if(ok) |
---|
183 | check = TY_CheckSolution( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
184 | if(prnt) |
---|
185 | printf "solution = (%g, %g, %g, %g, %g, %g) check = %d\r", a, b, c1, c2, d1, d2, check |
---|
186 | endif |
---|
187 | |
---|
188 | // if(check) |
---|
189 | if(ok) //if(ok) simply takes the best solution, not necessarily one that passes TY_CheckSolution |
---|
190 | yw = SqTwoYukawa(xw*radius*2, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2) |
---|
191 | // printf("%g %g\n",q,sq) |
---|
192 | endif |
---|
193 | endif |
---|
194 | |
---|
195 | return (0) |
---|
196 | End |
---|
197 | |
---|
198 | |
---|
199 | Macro Plot_2YukawaPotential() |
---|
200 | fPlot_2YukawaPotential() |
---|
201 | End |
---|
202 | |
---|
203 | Function fPlot_2YukawaPotential() |
---|
204 | |
---|
205 | Variable k1,z1,k2,z2,radius |
---|
206 | Variable ii=0,num=500,rmax=10,rval |
---|
207 | |
---|
208 | if(exists("root:coef_2yuk") == 0) |
---|
209 | Abort "You must plot the 2-Yukawa model before plotting the potential" |
---|
210 | else |
---|
211 | WAVE coef_2yuk = root:coef_2yuk |
---|
212 | endif |
---|
213 | |
---|
214 | radius = coef_2yuk[1] |
---|
215 | K1 = coef_2yuk[2] |
---|
216 | Z1 = coef_2yuk[3] |
---|
217 | K2 = coef_2yuk[4] |
---|
218 | Z2 = coef_2yuk[5] |
---|
219 | |
---|
220 | Make/O/D/N=(num) TwoYukawa_Potential,TwoYukawa_Potential_r |
---|
221 | TwoYukawa_Potential_r = x/num*rmax |
---|
222 | |
---|
223 | do |
---|
224 | rval = TwoYukawa_Potential_r[ii] |
---|
225 | if(rval <= 1) |
---|
226 | TwoYukawa_Potential[ii] = inf |
---|
227 | else |
---|
228 | TwoYukawa_Potential[ii] = -1*K1*(exp(-1*Z1*(rval-1))/rval) - K2*exp(-1*Z2*(rval-1))/rval |
---|
229 | endif |
---|
230 | |
---|
231 | ii+=1 |
---|
232 | while(ii<num) |
---|
233 | |
---|
234 | |
---|
235 | // if graph is not open, draw a graph |
---|
236 | DoWindow YukawaPotential |
---|
237 | if(V_flag == 0) |
---|
238 | Display/N=YukawaPotential TwoYukawa_Potential vs TwoYukawa_Potential_r |
---|
239 | ModifyGraph marker=29,msize=2,mode=4,grid=1,mirror=2 |
---|
240 | Label bottom "r/Diameter" |
---|
241 | Label left "V(r)/kT" |
---|
242 | endif |
---|
243 | |
---|
244 | return(0) |
---|
245 | End |
---|
246 | |
---|
247 | |
---|
248 | |
---|
249 | ///////////////////// converted procedures from c-code //////////////////////////// |
---|
250 | |
---|
251 | /// there were two functions defined as TY_q: one as TY_Q and one as TY_q. I renamed the TY_Q function as TY_capQ, and left TY_q unchanged |
---|
252 | |
---|
253 | // function TY_W change to TY_capW, since there is a wave named TY_w |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | |
---|
258 | |
---|
259 | Static Function chop(x) |
---|
260 | Variable x |
---|
261 | |
---|
262 | if ( abs(x) < 1e-6 ) |
---|
263 | return 0 |
---|
264 | else |
---|
265 | return x |
---|
266 | endif |
---|
267 | |
---|
268 | end |
---|
269 | |
---|
270 | Static Function pow(a,b) |
---|
271 | Variable a,b |
---|
272 | |
---|
273 | return (a^b) |
---|
274 | end |
---|
275 | |
---|
276 | ///* |
---|
277 | // ================================================================================================== |
---|
278 | // |
---|
279 | // The two-yukawa structure factor is uniquley determined by 6 parameters a, b, c1, c2, d1, d2, |
---|
280 | // which are the solution of a system of 6 equations ( 4 linear, 2 nonlinear ). The solution can |
---|
281 | // constructed by the roots of a polynomial of 22nd degree. For more details see attached |
---|
282 | // Mathematica notebook, where a derivation is given |
---|
283 | // |
---|
284 | // ================================================================================================== |
---|
285 | // */ |
---|
286 | |
---|
287 | // these all may need to be declared as global variables !! |
---|
288 | // |
---|
289 | // - they are defined in a global scope in the c-code! |
---|
290 | // |
---|
291 | // - change the data folder |
---|
292 | Function declare2YGlobals() |
---|
293 | |
---|
294 | NewDataFolder/O/S root:yuk |
---|
295 | |
---|
296 | Variable/G TY_q22 |
---|
297 | Variable/G TY_qa12, TY_qa21, TY_qa22, TY_qa23, TY_qa32 |
---|
298 | Variable/G TY_qb12, TY_qb21, TY_qb22, TY_qb23, TY_qb32 |
---|
299 | Variable/G TY_qc112, TY_qc121, TY_qc122, TY_qc123, TY_qc132 |
---|
300 | Variable/G TY_qc212, TY_qc221, TY_qc222, TY_qc223, TY_qc232 |
---|
301 | Variable/G TY_A12, TY_A21, TY_A22, TY_A23, TY_A32, TY_A41, TY_A42, TY_A43, TY_A52 |
---|
302 | Variable/G TY_B12, TY_B14, TY_B21, TY_B22, TY_B23, TY_B24, TY_B25, TY_B32, TY_B34 |
---|
303 | Variable/G TY_F14, TY_F16, TY_F18, TY_F23, TY_F24, TY_F25, TY_F26, TY_F27, TY_F28, TY_F29, TY_F32, TY_F33, TY_F34, TY_F35, TY_F36, TY_F37, TY_F38, TY_F39, TY_F310 |
---|
304 | Variable/G TY_G13, TY_G14, TY_G15, TY_G16, TY_G17, TY_G18, TY_G19, TY_G110, TY_G111, TY_G112, TY_G113, TY_G22, TY_G23, TY_G24, TY_G25, TY_G26, TY_G27, TY_G28, TY_G29, TY_G210, TY_G211, TY_G212, TY_G213, TY_G214 |
---|
305 | |
---|
306 | SetDataFolder root: |
---|
307 | //this is an array, already global TY_w[23]; |
---|
308 | |
---|
309 | End |
---|
310 | |
---|
311 | |
---|
312 | Function TY_sigma( s, Z1, Z2, a, b, c1, c2, d1, d2 ) |
---|
313 | Variable s, Z1, Z2, a, b, c1, c2, d1, d2 |
---|
314 | |
---|
315 | return -(a / 2. + b + c1 * exp( -Z1 ) + c2 * exp( -Z2 )) / s + a * pow( s, -3 ) + b * pow( s, -2 ) + ( c1 + d1 ) * pow( s + Z1, -1 ) + ( c2 + d2 ) * pow( s + Z2, -1 ) |
---|
316 | end |
---|
317 | |
---|
318 | Function TY_tau( s, Z1, Z2, a, b, c1, c2 ) |
---|
319 | Variable s, Z1, Z2, a, b, c1, c2 |
---|
320 | |
---|
321 | return b * pow( s, -2 ) + a * ( pow( s, -3 ) + pow( s, -2 ) ) - pow( s, -1 ) * ( c1 * Z1 * exp( -Z1 ) * pow( s + Z1, -1 ) + c2 * Z2 * exp( -Z2 ) * pow( s + Z2, -1 ) ) |
---|
322 | end |
---|
323 | |
---|
324 | Function TY_q( s, Z1, Z2, a, b, c1, c2, d1, d2 ) |
---|
325 | Variable s, Z1, Z2, a, b, c1, c2, d1, d2 |
---|
326 | return TY_sigma(s, Z1, Z2, a, b, c1, c2, d1, d2) - exp( -s ) * TY_tau(s, Z1, Z2, a,b, c1, c2) |
---|
327 | end |
---|
328 | |
---|
329 | Function TY_g( s, phi, Z1, Z2, a, b, c1, c2, d1, d2 ) |
---|
330 | Variable s, phi, Z1, Z2, a, b, c1, c2, d1, d2 |
---|
331 | return s * TY_tau( s, Z1, Z2, a, b, c1, c2 ) * exp( -s ) / ( 1 - 12 * phi * TY_q( s, Z1, Z2, a, b, c1, c2, d1, d2 ) ) |
---|
332 | end |
---|
333 | |
---|
334 | ///* |
---|
335 | // ================================================================================================== |
---|
336 | // |
---|
337 | // Structure factor for the potential |
---|
338 | // |
---|
339 | // V(r) = -kB * T * ( K1 * exp[ -Z1 * (r - 1)] / r + K2 * exp[ -Z2 * (r - 1)] / r ) for r > 1 |
---|
340 | // V(r) = inf for r <= 1 |
---|
341 | // |
---|
342 | // The structure factor is parametrized by (a, b, c1, c2, d1, d2) |
---|
343 | // which depend on (K1, K2, Z1, Z2, phi). |
---|
344 | // |
---|
345 | // ================================================================================================== |
---|
346 | // */ |
---|
347 | |
---|
348 | Function TY_hq( q, Z, K, v ) |
---|
349 | Variable q, Z, K, v |
---|
350 | |
---|
351 | if ( q == 0) |
---|
352 | return (exp(-2.*Z)*(v + (v*(-1. + Z) - 2.*K*Z)*exp(Z))*(-(v*(1. + Z)) + (v + 2.*K*Z*(1. + Z))*exp(Z))*pow(K,-1)*pow(Z,-4))/4. |
---|
353 | else |
---|
354 | |
---|
355 | variable t1, t2, t3, t4 |
---|
356 | |
---|
357 | t1 = ( 1. - v / ( 2. * K * Z * exp( Z ) ) ) * ( ( 1. - cos( q ) ) / ( q*q ) - 1. / ( Z*Z + q*q ) ) |
---|
358 | t2 = ( v*v * ( q * cos( q ) - Z * sin( q ) ) ) / ( 4. * K * Z*Z * q * ( Z*Z + q*q ) ) |
---|
359 | t3 = ( q * cos( q ) + Z * sin( q ) ) / ( q * ( Z*Z + q*q ) ) |
---|
360 | t4 = v / ( Z * exp( Z ) ) - v*v / ( 4. * K * Z*Z * exp( 2. * Z ) ) - K |
---|
361 | |
---|
362 | return v / Z * t1 - t2 + t3 * t4 |
---|
363 | endif |
---|
364 | end |
---|
365 | |
---|
366 | |
---|
367 | Function TY_pc( q, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
368 | Variable q, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
369 | |
---|
370 | variable v1 = 24. * phi * K1 * exp( Z1 ) * TY_g( Z1, phi, Z1, Z2, a, b, c1, c2, d1, d2 ) |
---|
371 | variable v2 = 24. * phi * K2 * exp( Z2 ) * TY_g( Z2, phi, Z1, Z2, a, b, c1, c2, d1, d2 ) |
---|
372 | |
---|
373 | variable a0 = a * a |
---|
374 | variable b0 = -12. * phi *( pow( a + b,2 ) / 2. + a * ( c1 * exp( -Z1 ) + c2 * exp( -Z2 ) ) ) |
---|
375 | |
---|
376 | variable t1, t2, t3 |
---|
377 | |
---|
378 | if ( q == 0 ) |
---|
379 | t1 = a0 / 3. |
---|
380 | t2 = b0 / 4. |
---|
381 | t3 = a0 * phi / 12. |
---|
382 | else |
---|
383 | t1 = a0 * ( sin( q ) - q * cos( q ) ) / pow( q, 3 ) |
---|
384 | t2 = b0 * ( 2. * q * sin( q ) - ( q * q - 2. ) * cos( q ) - 2. ) / pow( q, 4 ) |
---|
385 | t3 = a0 * phi * ( ( q*q - 6. ) * 4. * q * sin( q ) - ( pow( q, 4 ) - 12. * q*q + 24.) * cos( q ) + 24. ) / ( 2. * pow( q, 6 ) ) |
---|
386 | endif |
---|
387 | |
---|
388 | variable t4 = TY_hq( q, Z1, K1, v1 ) + TY_hq( q, Z2, K2, v2 ) |
---|
389 | |
---|
390 | return -24. * phi * ( t1 + t2 + t3 + t4 ) |
---|
391 | end |
---|
392 | |
---|
393 | Function SqTwoYukawa( q, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
394 | variable q, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
395 | |
---|
396 | if ( Z1 == Z2 ) |
---|
397 | // one-yukawa potential |
---|
398 | return 0 |
---|
399 | else |
---|
400 | // two-yukawa potential |
---|
401 | return 1. / ( 1. - TY_pc( q, Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
402 | endif |
---|
403 | end |
---|
404 | |
---|
405 | ///* |
---|
406 | //================================================================================================== |
---|
407 | // |
---|
408 | // Non-linear eqaution system that determines the parameter for structure factor |
---|
409 | // |
---|
410 | //================================================================================================== |
---|
411 | //*/ |
---|
412 | |
---|
413 | Function TY_LinearEquation_1( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
414 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
415 | |
---|
416 | return b - 12. * phi * ( -a / 8. - b / 6. + d1 * pow( Z1, -2 ) + c1 * ( pow( Z1, -2 ) - exp( -Z1 ) * ( 0.5 + ( 1. + Z1 ) * pow( Z1, -2 ) ) ) + d2 * pow( Z2, -2 ) + c2 * ( pow( Z2, -2 ) - exp( -Z2 )* ( 0.5 + ( 1. + Z2 ) * pow( Z2, -2 ) ) ) ) |
---|
417 | end |
---|
418 | |
---|
419 | Function TY_LinearEquation_2( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
420 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
421 | |
---|
422 | return 1. - a - 12. * phi * ( -a / 3. - b / 2. + d1 * pow( Z1, -1 ) + c1 * ( pow( Z1, -1 ) - ( 1. + Z1 ) * exp( -Z1 ) * pow( Z1, -1 ) ) + d2 * pow( Z2, -1 ) + c2 * ( pow( Z2, -1 ) - ( 1. + Z2 ) * exp( -Z2 ) * pow( Z2, -1 ) ) ) |
---|
423 | end |
---|
424 | |
---|
425 | Function TY_LinearEquation_3( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
426 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
427 | |
---|
428 | return K1 * exp( Z1 ) - d1 * Z1 * ( 1. - 12. * phi * TY_q( Z1, Z1, Z2, a, b, c1, c2, d1, d2 ) ) |
---|
429 | end |
---|
430 | |
---|
431 | Function TY_LinearEquation_4( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
432 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
433 | |
---|
434 | return K2 * exp( Z2 ) - d2 * Z2 * ( 1. - 12. * phi * TY_q( Z2, Z1, Z2, a, b, c1, c2, d1, d2 ) ) |
---|
435 | end |
---|
436 | |
---|
437 | Function TY_NonlinearEquation_1( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
438 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
439 | |
---|
440 | return c1 + d1 - 12. * phi * ( ( c1 + d1 ) * TY_sigma( Z1, Z1, Z2, a, b, c1, c2, d1, d2 ) - c1 * TY_tau( Z1, Z1, Z2, a, b, c1, c2 ) * exp( -Z1 ) ) |
---|
441 | end |
---|
442 | |
---|
443 | Function TY_NonlinearEquation_2( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
444 | Variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
445 | |
---|
446 | return c2 + d2 - 12. * phi * ( ( c2 + d2 ) * TY_sigma( Z2, Z1, Z2, a, b, c1, c2, d1, d2 ) - c2 * TY_tau( Z2, Z1, Z2, a, b, c1, c2 ) * exp( -Z2 ) ) |
---|
447 | end |
---|
448 | |
---|
449 | // Check the computed solutions satisfy the system of equations |
---|
450 | Function TY_CheckSolution( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) |
---|
451 | variable Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 |
---|
452 | |
---|
453 | variable eq_1 = chop( TY_LinearEquation_1( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
454 | variable eq_2 = chop( TY_LinearEquation_2( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
455 | variable eq_3 = chop( TY_LinearEquation_3( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
456 | variable eq_4 = chop( TY_LinearEquation_4( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
457 | variable eq_5 = chop( TY_NonlinearEquation_1( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
458 | variable eq_6 = chop( TY_NonlinearEquation_2( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2 ) ) |
---|
459 | |
---|
460 | // printf("Check of solution = %g %g %g %g %g %g\r",eq_1,eq_2,eq_3,eq_4,eq_5,eq_6); |
---|
461 | // check if all equation are zero |
---|
462 | return ( eq_1 == 0 && eq_2 == 0 && eq_3 == 0 && eq_4 == 0 && eq_5 == 0 && eq_6 == 0 ) |
---|
463 | end |
---|
464 | |
---|
465 | Function TY_ReduceNonlinearSystem( Z1, Z2, K1, K2, phi, prnt ) |
---|
466 | Variable Z1, Z2, K1, K2, phi, prnt |
---|
467 | |
---|
468 | |
---|
469 | // /* solution of the 4 linear equations depending on d1 and d2, the solution is polynomial |
---|
470 | // in d1, d2. We represend the solution as determiants obtained by Cramer's rule |
---|
471 | // which can be expressed by their coefficient matrices |
---|
472 | // */ |
---|
473 | |
---|
474 | Variable m11 = (3.*phi)/2. |
---|
475 | Variable m13 = 6.*phi*exp(-Z1)*(2. + Z1*(2. + Z1) - 2.*exp(Z1))*pow(Z1,-2) |
---|
476 | Variable m14 = 6.*phi*exp(-Z2)*(2. + Z2*(2. + Z2) - 2.*exp(Z2))*pow(Z2,-2) |
---|
477 | Variable m23 = -12.*phi*exp(-Z1)*(-1. - Z1 + exp(Z1))*pow(Z1,-1) |
---|
478 | Variable m24 = -12.*phi*exp(-Z2)*(-1. - Z2 + exp(Z2))*pow(Z2,-1) |
---|
479 | Variable m31 = -6.*phi*exp(-Z1)*pow(Z1,-2)*(2.*(1 + Z1) + exp(Z1)*(-2. + pow(Z1,2))) |
---|
480 | Variable m32 = -12.*phi*(-1. + Z1 + exp(-Z1))*pow(Z1,-1) |
---|
481 | Variable m33 = 6.*phi*exp(-2.*Z1)*pow(-1. + exp(Z1),2) |
---|
482 | Variable m34 = 12.*phi*exp(-Z1 - Z2)*(Z2 - (Z1 + Z2)*exp(Z1) + Z1*exp(Z1 + Z2))*pow(Z1 + Z2,-1) |
---|
483 | Variable m41 = -6.*phi*exp(-Z2)*pow(Z2,-2)*(2.*(1. + Z2) + exp(Z2)*(-2. + pow(Z2,2))) |
---|
484 | Variable m42 = -12.*phi*(-1. + Z2 + exp(-Z2))*pow(Z2,-1) |
---|
485 | Variable m43 = 12.*phi*exp(-Z1 - Z2)*(Z1 - (Z1 + Z2 - Z2*exp(Z1))*exp(Z2))*pow(Z1 + Z2,-1) |
---|
486 | Variable m44 = 6.*phi*exp(-2*Z2)*pow(-1. + exp(Z2),2) |
---|
487 | |
---|
488 | // /* determinant of the linear system expressed as coefficient matrix in d1, d2 */ |
---|
489 | |
---|
490 | NVAR TY_q22 = root:yuk:TY_q22 |
---|
491 | |
---|
492 | TY_q22 = m14*(-(m33*m42) + m23*(m32*m41 - m31*m42) + m32*m43 + (4.*m11*(-3.*m33*m41 + 2.*m33*m42 + 3.*m31*m43 - 2.*m32*m43))/3.) |
---|
493 | TY_q22 += m13*(m34*m42 + m24*(-(m32*m41) + m31*m42) - m32*m44 + (4.*m11*(3.*m34*m41 - 2.*m34*m42 - 3.*m31*m44 + 2.*m32*m44))/3.) |
---|
494 | TY_q22 += (3.*m24*(m33*(3.*m41 + 4.*m11*m41 - 3.*m11*m42) + (-3.*m31 - 4.*m11*m31 + 3.*m11*m32)*m43) + 3.*m23*(-3.*m34*m41 - 4.*m11*m34*m41 + 3.*m11*m34*m42 + 3.*m31*m44 + 4.*m11*m31*m44 - 3.*m11*m32*m44) - (m34*m43 - m33*m44)*pow(3. - 2.*m11,2))/9. |
---|
495 | |
---|
496 | if( prnt ) |
---|
497 | printf "\rDet = \r" |
---|
498 | // printf "%f\t%f\r%f\t%f\r", 0., 0., 0., TY_q22 |
---|
499 | printf "TY_q22 = %15.12g\r",TY_q22 |
---|
500 | endif |
---|
501 | |
---|
502 | // /* Matrix representation of the determinant of the of the system where row refering to |
---|
503 | // the variable a is replaced by solution vector */ |
---|
504 | |
---|
505 | NVAR TY_qa12 = root:yuk:TY_qa12 |
---|
506 | NVAR TY_qa21 = root:yuk:TY_qa21 |
---|
507 | NVAR TY_qa22 = root:yuk:TY_qa22 |
---|
508 | NVAR TY_qa23 = root:yuk:TY_qa23 |
---|
509 | NVAR TY_qa32 = root:yuk:TY_qa32 |
---|
510 | |
---|
511 | Variable t1,t2,t3,t4,t5,t6,t7,t8,t9,t10 |
---|
512 | Variable t11,t12,t13,t14,t15,t16,t17,t18,t19,t20 //simply to keep the line length small enough |
---|
513 | |
---|
514 | TY_qa12 = (K1*(3.*m14*(m23*m42 - 4.*m11*m43) - 3.*m13*(m24*m42 - 4.*m11*m44) + (3. + 4.*m11)*(m24*m43 - m23*m44))*exp(Z1))/3. |
---|
515 | |
---|
516 | TY_qa21 = -(K2*(3.*m14*(m23*m32 - 4.*m11*m33) - 3.*m13*(m24*m32 - 4.*m11*m34) + (3. + 4.*m11)*(m24*m33 - m23*m34))*exp(Z2))/3. |
---|
517 | |
---|
518 | TY_qa22 = m14*(-(m23*m42*Z1) + 4.*m11*m43*Z1 - m33*(m42 + 4.*m11*Z2) + m32*(m43 + m23*Z2)) + (3.*m13*(m24*m42*Z1 - 4.*m11*m44*Z1 + m34*(m42 + 4.*m11*Z2) - m32*(m44 + m24*Z2)) + (3. + 4.*m11)*(-(m24*m43*Z1) + m23*m44*Z1 - m34*(m43 + m23*Z2) + m33*(m44 + m24*Z2)))/3. |
---|
519 | |
---|
520 | |
---|
521 | t1 = (2.*(-3.*m13*m42 + 3.*m43 + 4.*m11*m43)*Z1*pow(Z2,2) - m33*(Z1 + Z2)*(6.*m42 + (3. + 4.*m11)*pow(Z2,2)) + 3.*m32*(Z1 + Z2)*(2.*m43 + m13*pow(Z2,2))) |
---|
522 | t2 = (2.*(3.*m14*m42 - 3.*m44 - 4.*m11*m44)*Z1*pow(Z2,2) + m34*(Z1 + Z2)*(6.*m42 + (3. + 4.*m11)*pow(Z2,2)) - 3.*m32*(Z1 + Z2)*(2.*m44 + m14*pow(Z2,2))) |
---|
523 | t3 = (3.*(m14*m33*m42 - m13*m34*m42 - m14*m32*m43 + m34*m43 + m13*m32*m44 - m33*m44)*Z2*(Z1 + Z2) + 2.*m11*(6.*(-(m14*m43) + m13*m44)*Z1*pow(Z2,2) + m34*(Z1 + Z2)*(2.*m43*(-3. + Z2) - 3.*m13*pow(Z2,2)) + m33*(Z1 + Z2)*(6.*m44 - 2.*m44*Z2 + 3.*m14*pow(Z2,2)))) |
---|
524 | |
---|
525 | TY_qa23 = 2.*phi*pow(Z2,-2)*(m24*t1 + m23*t2 + 2.*t3)*pow(Z1 + Z2,-1) |
---|
526 | |
---|
527 | |
---|
528 | |
---|
529 | t1 = ((-3.*m13*m42 + (3. + 4.*m11)*m43)*(Z1 + Z2)*pow(Z1,2) - 2.*m33*(3.*m42*(Z1 + Z2) + (3. + 4.*m11)*Z2*pow(Z1,2)) + 6.*m32*(m43*(Z1 + Z2) + m13*Z2*pow(Z1,2))) |
---|
530 | t2 = ((3.*m14*m42 - (3. + 4.*m11)*m44)*(Z1 + Z2)*pow(Z1,2) + m34*(6.*m42*(Z1 + Z2) + 2.*(3. + 4.*m11)*Z2*pow(Z1,2)) - 6.*m32*(m44*(Z1 + Z2) + m14*Z2*pow(Z1,2))) |
---|
531 | t3 = (3.*(m14*m33*m42 - m13*m34*m42 - m14*m32*m43 + m34*m43 + m13*m32*m44 - m33*m44)*Z1*(Z1 + Z2) + 2.*m11*(-3.*(m14*m43 - m13*m44)*(Z1 + Z2)*pow(Z1,2) + 2.*m34*(m43*(-3 + Z1)*(Z1 + Z2) - 3.*m13*Z2*pow(Z1,2)) + m33*(-2.*m44*(-3. + Z1)*(Z1 + Z2) + 6.*m14*Z2*pow(Z1,2)))) |
---|
532 | |
---|
533 | TY_qa32 = 2.*phi*pow(Z1,-2)*(m24*t1 + m23*t2 + 2.*t3)*pow(Z1 + Z2,-1) |
---|
534 | |
---|
535 | if( prnt ) |
---|
536 | printf "\rDet_a = \r" |
---|
537 | // printf "%f\t%f\t%f\r%f\t%f\t%f\r%f\t%f\t%f\r", 0., TY_qa12, 0., TY_qa21, TY_qa22, TY_qa23, 0., TY_qa32, 0. |
---|
538 | printf "TY_qa12 = %15.12g\r",TY_qa12 |
---|
539 | printf "TY_qa21 = %15.12g\r",TY_qa21 |
---|
540 | printf "TY_qa22 = %15.12g\r",TY_qa22 |
---|
541 | printf "TY_qa23 = %15.12g\r",TY_qa23 |
---|
542 | printf "TY_qa32 = %15.12g\r",TY_qa32 |
---|
543 | endif |
---|
544 | |
---|
545 | // /* Matrix representation of the determinant of the of the system where row refering to |
---|
546 | // the variable b is replaced by solution vector */ |
---|
547 | |
---|
548 | NVAR TY_qb12 = root:yuk:TY_qb12 |
---|
549 | NVAR TY_qb21 = root:yuk:TY_qb21 |
---|
550 | NVAR TY_qb22 = root:yuk:TY_qb22 |
---|
551 | NVAR TY_qb23 = root:yuk:TY_qb23 |
---|
552 | NVAR TY_qb32 = root:yuk:TY_qb32 |
---|
553 | |
---|
554 | TY_qb12 = (K1*(-3.*m11*m24*m43 + m14*(-3.*m23*m41 + (-3. + 8.*m11)*m43) + 3.*m11*m23*m44 + m13*(3.*m24*m41 + 3.*m44 - 8.*m11*m44))*exp(Z1))/3. |
---|
555 | |
---|
556 | TY_qb21 = (K2*(-3.*m13*m24*m31 + 3.*m11*m24*m33 + m14*(3.*m23*m31 + (3. - 8.*m11)*m33) - 3.*m13*m34 + 8.*m11*m13*m34 - 3.*m11*m23*m34)*exp(Z2))/3. |
---|
557 | |
---|
558 | TY_qb22 = m13*(m31*m44 - m24*m41*Z1 - m44*Z1 + (8.*m11*m44*Z1)/3. + m24*m31*Z2 + m34*(-m41 + Z2 - (8.*m11*Z2)/3.)) + m14*(m23*m41*Z1 + m43*Z1 - (8.*m11*m43*Z1)/3. + m33*(m41 - Z2 + (8.*m11*Z2)/3.) - m31*(m43 + m23*Z2)) + m11*(m24*m43*Z1 - m23*m44*Z1 + m34*(m43 + m23*Z2) - m33*(m44 + m24*Z2)) |
---|
559 | |
---|
560 | t1 = (-(m14*m33*m41) + m13*m34*m41 + m14*m31*m43 - m11*m34*m43 - m13*m31*m44 + m11*m33*m44) |
---|
561 | t2 = (-3.*m11*m24*m43 + m14*(-3.*m23*m41 + (-3. + 8.*m11)*m43) + 3.*m11*m23*m44 + m13*(3.*m24*m41 + 3.*m44 - 8.*m11*m44)) |
---|
562 | t3 = (3.*m24*(m33*m41 - m31*m43) + m23*(-3.*m34*m41 + 3.*m31*m44) + (-3. + 8.*m11)*(m34*m43 - m33*m44)) |
---|
563 | |
---|
564 | TY_qb23 = 2.*phi*(3.*m14*m23*m31 - 3.*m13*m24*m31 + 3.*m14*m33 - 8.*m11*m14*m33 + 3.*m11*m24*m33 - 3.*m13*m34 + 8.*m11*m13*m34 - 3.*m11*m23*m34 + 2.*t3* pow(Z2,-2) + 6.*t1*pow(Z2,-1) + 2.*t2*Z1*pow(Z1 + Z2,-1)) |
---|
565 | |
---|
566 | |
---|
567 | t1 = (-(m34*(m23*m41 + m43)) + m24*(m33*m41 - m31*m43) + (m23*m31 + m33)*m44) |
---|
568 | t2 = (-(m14*m33*m41) + m13*m34*m41 + m14*m31*m43 - m13*m31*m44) |
---|
569 | t3 = (m14*(2.*m23*m31 + 2.*m33 - m23*m41 - m43) + m13*(-2.*m34 + m24*(-2.*m31 + m41) + m44)) |
---|
570 | t4 = (16.*m34*m43 - 16.*m33*m44 - 6.*m34*m43*Z1 + 6.*m33*m44*Z1 + (6.*m24*m33 - 3.*m24*m43 + 8.*m14*(-2.*m33 + m43) + (8.*m13 - 3.*m23)*(2.*m34 - m44))*pow(Z1,2)) |
---|
571 | t5 = (2.*m34*m43*(8. - 3.*Z1) + 2.*m33*m44*(-8. + 3.*Z1) + (8.*m14*m43 - 3.*m24*m43 - 8.*m13*m44 + 3.*m23*m44)*pow(Z1,2)) |
---|
572 | |
---|
573 | TY_qb32 = 2.*phi*pow(Z1,-2)*(6.*t1 + 6.*t2*Z1 + 3.*t3*pow(Z1,2) + (m11*Z2*t4 + m11*Z1*t5)* pow(Z1 + Z2,-1) + 6.*(-(m14*(m23*m31 + m33)) + m13*(m24*m31 + m34))*pow(Z1,3)*pow(Z1 + Z2,-1)) |
---|
574 | |
---|
575 | |
---|
576 | if( prnt ) |
---|
577 | printf "\rDet_b = \r" |
---|
578 | // printf "%f\t%f\t%f\r%f\t%f\t%f\r%f\t%f\t%f\r", 0., TY_qb12, 0., TY_qb21, TY_qb22, TY_qb23, 0., TY_qb32, 0. |
---|
579 | printf "TY_qb12 = %15.12g\r",TY_qb12 |
---|
580 | printf "TY_qb21 = %15.12g\r",TY_qb21 |
---|
581 | printf "TY_qb22 = %15.12g\r",TY_qb22 |
---|
582 | printf "TY_qb23 = %15.12g\r",TY_qb23 |
---|
583 | printf "TY_qb32 = %15.12g\r",TY_qb32 |
---|
584 | endif |
---|
585 | |
---|
586 | // /* Matrix representation of the determinant of the of the system where row refering to |
---|
587 | // the variable c1 is replaced by solution vector */ |
---|
588 | NVAR TY_qc112 = root:yuk:TY_qc112 |
---|
589 | NVAR TY_qc121 = root:yuk:TY_qc121 |
---|
590 | NVAR TY_qc122 = root:yuk:TY_qc122 |
---|
591 | NVAR TY_qc123 = root:yuk:TY_qc123 |
---|
592 | NVAR TY_qc132 = root:yuk:TY_qc132 |
---|
593 | |
---|
594 | TY_qc112 = -(K1*exp(Z1)*(9.*m24*m41 - 9.*m14*m42 + 3.*m11*(-12.*m14*m41 + 4.*m24*m41 + 8.*m14*m42 - 3.*m24*m42) + m44*pow(3. - 2.*m11,2)))/9. |
---|
595 | |
---|
596 | TY_qc121 = (K2*exp(Z2)*(9.*m24*m31 - 9.*m14*m32 + 3.*m11*(-12.*m14*m31 + 4.*m24*m31 + 8.*m14*m32 - 3.*m24*m32) + m34*pow(3. - 2.*m11,2)))/9. |
---|
597 | |
---|
598 | TY_qc122 = m14*(-4.*m11*m41*Z1 - m42*Z1 + (8.*m11*m42*Z1)/3. + m32*(-m41 + Z2 - (8.*m11*Z2)/3.) + m31*(m42 + 4.*m11*Z2)) + (3.*m34*((3. + 4.*m11)*m41 - 3.*m11*m42) + 9.*m11*m32*m44 + 9.*m24*m41*Z1 + 12.*m11*m24*m41*Z1 - 9.*m11*m24*m42*Z1 + 9.*m44*Z1 - 12.*m11*m44*Z1 + 9.*m11*m24*m32*Z2 - 3.*(3. + 4.*m11)*m31*(m44 + m24*Z2) - m34*Z2*pow(3. - 2.*m11,2) + 4.*m44*Z1*pow(m11,2))/9. |
---|
599 | |
---|
600 | |
---|
601 | t1 = (m34*(Z1 + Z2)*(2.*m42 + Z2*(-2.*m41 + Z2)) - m32*(Z1 + Z2)*(2.*m44 + m14*Z2*(-2.*m41 + Z2)) - 2.*(m14*m42 - m44)*Z2*(-(Z1*Z2) + m31*(Z1 + Z2))) |
---|
602 | t2 = (2.*(3.*m41 + 4.*m11*m41 - 3.*m11*m42)*Z1*pow(Z2,2) + 3.*m32*(Z1 + Z2)*(2.*m41 + m11*pow(Z2,2)) - m31*(Z1 + Z2)*(6.*m42 + (3. + 4.*m11)*pow(Z2,2))) |
---|
603 | t3 = (8.*m42 + 4.*m41*(-3. + Z2) - 3.*m42*Z2 + 2.*pow(Z2,2)) |
---|
604 | t4 = (6.*m44 - 2.*m44*Z2 + 3.*m14*pow(Z2,2)) |
---|
605 | t5 = (-8.*m32*m44*Z1 + m32*m44*(-8. + 3.*Z1)*Z2 + (3.*m32*m44 - 4.*(m14*(m32 + 3.*m41 - 2.*m42) + m44)*Z1)*pow(Z2,2) + m34*(Z1 + Z2)*t3 + 2.*m31*(Z1 + Z2)*t4 - 4.*m14*m32*pow(Z2,3)) |
---|
606 | |
---|
607 | TY_qc123 = (2.*phi*pow(Z2,-2)*(9.*t1 + 4.*(-2.*m44*Z1 + m34*(Z1 + Z2))*pow(m11,2)*pow(Z2,2) - 3.*m24*t2 - 6.*m11*t5)*pow(Z1 + Z2,-1))/3.; |
---|
608 | |
---|
609 | |
---|
610 | t1 = ((m14*m42 - m44)*(2.*m31 - Z1)*Z1*(Z1 + Z2) - 2.*m34*(m42*(Z1 + Z2) - Z1*(-(Z1*Z2) + m41*(Z1 + Z2))) + 2.*m32*(m44*(Z1 + Z2) - m14*Z1*(-(Z1*Z2) + m41*(Z1 + Z2)))) |
---|
611 | t2 = (((3. + 4.*m11)*m41 - 3.*m11*m42)*(Z1 + Z2)*pow(Z1,2) + 6.*m32*(m41*(Z1 + Z2) + m11*Z2*pow(Z1,2)) - 2.*m31*(3.*m42*(Z1 + Z2) + (3. + 4.*m11)*Z2*pow(Z1,2))) |
---|
612 | t3 = (-8.*m32*m44 + m34*(m42*(8. - 3.*Z1) + 4.*m41*(-3. + Z1)) - 4.*m31*m44*(-3. + Z1) + 3.*m32*m44*Z1 - 2.*(3.*m14*m41 - 2.*m14*m42 + m44)*pow(Z1,2)) |
---|
613 | t4 = (4.*(3.*m31 - 2.*m32)*m44 + Z1*(-4.*m31*m44 + 3.*m32*m44 - 2.*(m14*(-6.*m31 + 4.*m32 + 3.*m41 - 2.*m42) + m44)*Z1) + m34*(m42*(8. - 3.*Z1) + 4.*m41*(-3. + Z1) + 4.*pow(Z1,2))) |
---|
614 | |
---|
615 | TY_qc132 = (-2.*phi*pow(Z1,-2)*(9.*t1 + 4.*(-2.*m34*Z2 + m44*(Z1 + Z2))*pow(m11,2)*pow(Z1,2) + 3.*m24*t2 + 6.*m11*(Z1*t3 + Z2*t4))*pow(Z1 + Z2,-1))/3.; |
---|
616 | |
---|
617 | |
---|
618 | if( prnt ) |
---|
619 | printf "\rDet_c1 = \r" |
---|
620 | // printf "%f\t%f\t%f\r%f\t%f\t%f\r%f\t%f\t%f\r", 0., TY_qc112, 0., TY_qc121, TY_qc122, TY_qc123, 0., TY_qc132, 0. |
---|
621 | printf "TY_qc112 = %15.12g\r",TY_qc112 |
---|
622 | printf "TY_qc121 = %15.12g\r",TY_qc121 |
---|
623 | printf "TY_qc122 = %15.12g\r",TY_qc122 |
---|
624 | printf "TY_qc123 = %15.12g\r",TY_qc123 |
---|
625 | printf "TY_qc132 = %15.12g\r",TY_qc132 |
---|
626 | endif |
---|
627 | |
---|
628 | // /* Matrix representation of the determinant of the of the system where row refering to |
---|
629 | // the variable c1 is replaced by solution vector */ |
---|
630 | NVAR TY_qc212 = root:yuk:TY_qc212 |
---|
631 | NVAR TY_qc221 = root:yuk:TY_qc221 |
---|
632 | NVAR TY_qc222 = root:yuk:TY_qc222 |
---|
633 | NVAR TY_qc223 = root:yuk:TY_qc223 |
---|
634 | NVAR TY_qc232 = root:yuk:TY_qc232 |
---|
635 | |
---|
636 | TY_qc212 = (K1*exp(Z1)*(9*m23*m41 - 9*m13*m42 + 3*m11*(-12*m13*m41 + 4*m23*m41 + 8*m13*m42 - 3*m23*m42) + m43*pow(3 - 2*m11,2)))/9. |
---|
637 | |
---|
638 | TY_qc221 = -(K2*exp(Z2)*(9*m23*m31 - 9*m13*m32 + 3*m11*(-12*m13*m31 + 4*m23*m31 + 8*m13*m32 - 3*m23*m32) + m33*pow(3 - 2*m11,2)))/9. |
---|
639 | |
---|
640 | TY_qc222 = m13*(4*m11*m41*Z1 + m42*Z1 - (8*m11*m42*Z1)/3. + m32*(m41 - Z2 + (8*m11*Z2)/3.) - m31*(m42 + 4*m11*Z2)) + (9*m31*m43 - 9*(m23*m41 + m43)*Z1 + 9*m23*m31*Z2 + 3*m11*((-4*m23*m41 + 3*m23*m42 + 4*m43)*Z1 + 4*m31*(m43 + m23*Z2) - 3*m32*(m43 + m23*Z2)) + m33*(-3*(3 + 4*m11)*m41 + 9*m11*m42 + Z2*pow(3 - 2*m11,2)) - 4*m43*Z1*pow(m11,2))/9. |
---|
641 | |
---|
642 | |
---|
643 | t1 = (-(m33*(Z1 + Z2)*(2*m42 + Z2*(-2*m41 + Z2))) + m32*(Z1 + Z2)*(2*m43 + m13*Z2*(-2*m41 + Z2)) + 2*(m13*m42 - m43)*Z2*(-(Z1*Z2) + m31*(Z1 + Z2))) |
---|
644 | t2 = (2*(3*m41 + 4*m11*m41 - 3*m11*m42)*Z1*pow(Z2,2) + 3*m32*(Z1 + Z2)*(2*m41 + m11*pow(Z2,2)) - m31*(Z1 + Z2)*(6*m42 + (3 + 4*m11)*pow(Z2,2))) |
---|
645 | t3 = (-8*m32*m43*Z1 + m32*m43*(-8 + 3*Z1)*Z2 + (3*m32*m43 - 4*(m13*(m32 + 3*m41 - 2*m42) + m43)*Z1)*pow(Z2,2) + m33*(Z1 + Z2)*(8*m42 + 4*m41*(-3 + Z2) - 3*m42*Z2 + 2*pow(Z2,2)) + 2*m31*(Z1 + Z2)*(6*m43 - 2*m43*Z2 + 3*m13*pow(Z2,2)) - 4*m13*m32*pow(Z2,3)) |
---|
646 | |
---|
647 | TY_qc223 = (2*phi*pow(Z2,-2)*(9*t1 - 4*(-2*m43*Z1 + m33*(Z1 + Z2))*pow(m11,2)*pow(Z2,2) + 3*m23*t2 + 6*m11*t3)*pow(Z1 + Z2,-1))/3. |
---|
648 | |
---|
649 | |
---|
650 | t1 = ((m13*m42 - m43)*(2*m31 - Z1)*Z1*(Z1 + Z2) - 2*m33*(m42*(Z1 + Z2) - Z1*(-(Z1*Z2) + m41*(Z1 + Z2))) + 2*m32*(m43*(Z1 + Z2) - m13*Z1*(-(Z1*Z2) + m41*(Z1 + Z2)))) |
---|
651 | t2 = (((3 + 4*m11)*m41 - 3*m11*m42)*(Z1 + Z2)*pow(Z1,2) + 6*m32*(m41*(Z1 + Z2) + m11*Z2*pow(Z1,2)) - 2*m31*(3*m42*(Z1 + Z2) + (3 + 4*m11)*Z2*pow(Z1,2))) |
---|
652 | t3 = (-8*m32*m43 + m33*(m42*(8 - 3*Z1) + 4*m41*(-3 + Z1)) - 4*m31*m43*(-3 + Z1) + 3*m32*m43*Z1 - 2*(3*m13*m41 - 2*m13*m42 + m43)*pow(Z1,2)) |
---|
653 | t4 = (4*(3*m31 - 2*m32)*m43 + Z1*(-4*m31*m43 + 3*m32*m43 - 2*(m13*(-6*m31 + 4*m32 + 3*m41 - 2*m42) + m43)*Z1) + m33*(m42*(8 - 3*Z1) + 4*m41*(-3 + Z1) + 4*pow(Z1,2))) |
---|
654 | |
---|
655 | TY_qc232 = (2*phi*pow(Z1,-2)*(9*t1 + 4*(-2*m33*Z2 + m43*(Z1 + Z2))*pow(m11,2)*pow(Z1,2) + 3*m23*t2 + 6*m11*(Z1*t3 + Z2*t4))*pow(Z1 + Z2,-1))/3. |
---|
656 | |
---|
657 | |
---|
658 | if( prnt ) |
---|
659 | printf "\rDet_c2 = \r" |
---|
660 | // printf "%f\t%f\t%f\r%f\t%f\t%f\r%f\t%f\t%f\r", 0., TY_qc212, 0., TY_qc221, TY_qc222, TY_qc223, 0., TY_qc232, 0. |
---|
661 | printf "TY_qc212 = %15.12g\r",TY_qc212 |
---|
662 | printf "TY_qc221 = %15.12g\r",TY_qc221 |
---|
663 | printf "TY_qc222 = %15.12g\r",TY_qc222 |
---|
664 | printf "TY_qc223 = %15.12g\r",TY_qc223 |
---|
665 | printf "TY_qc232 = %15.12g\r",TY_qc232 |
---|
666 | endif |
---|
667 | |
---|
668 | // /* coefficient matrices of nonlinear equation 1 */ |
---|
669 | NVAR TY_A12 = root:yuk:TY_A12 |
---|
670 | NVAR TY_A21 = root:yuk:TY_A21 |
---|
671 | NVAR TY_A22 = root:yuk:TY_A22 |
---|
672 | NVAR TY_A23 = root:yuk:TY_A23 |
---|
673 | NVAR TY_A32 = root:yuk:TY_A32 |
---|
674 | NVAR TY_A41 = root:yuk:TY_A41 |
---|
675 | NVAR TY_A42 = root:yuk:TY_A42 |
---|
676 | NVAR TY_A43 = root:yuk:TY_A43 |
---|
677 | NVAR TY_A52 = root:yuk:TY_A52 |
---|
678 | |
---|
679 | t1 = (Z1*(2*TY_qb12*(-1 + Z1)*(Z1 + Z2) - Z1*(2*TY_qc212*Z1 + TY_qc112*(Z1 + Z2))) + TY_qa12*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
680 | t2 = (exp(2*Z1)*t1 - TY_qc112*(Z1 + Z2)*pow(Z1,2) + 2*(Z1 + Z2)*exp(Z1)*(TY_qa12 + (TY_qa12 + TY_qb12)*Z1 + TY_qc112*pow(Z1,2))) |
---|
681 | |
---|
682 | TY_A12 = 6*phi*TY_qc112*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*TY_qc212*exp(Z1)*(-Z2 + (Z1 + Z2)*exp(Z1))*pow(Z1,2) + exp(Z2)*t2)*pow(Z1 + Z2,-1); |
---|
683 | |
---|
684 | |
---|
685 | t1 = (2*Z1*(TY_qb21*TY_qc112*(-1 + Z1)*(Z1 + Z2) + TY_qb12*TY_qc121*(-1 + Z1)*(Z1 + Z2) - Z1*(TY_qc121*TY_qc212*Z1 + TY_qc112*(TY_qc121 + TY_qc221)*Z1 + TY_qc112*TY_qc121*Z2)) + TY_qa21*TY_qc112*(Z1 + Z2)*(-2 + pow(Z1,2)) + TY_qa12*TY_qc121*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
686 | t2 = (TY_qb21*TY_qc112 + TY_qc121*(TY_qa12 + TY_qb12 + 2*TY_qc112*Z1)) |
---|
687 | t3 = (2*(TY_qa12*TY_qc121 + TY_qa21*TY_qc112*(1 + Z1) + Z1*t2)*(Z1 + Z2)*exp(Z1) + exp(2*Z1)*t1 - 2*TY_qc112*TY_qc121*(Z1 + Z2)*pow(Z1,2)) |
---|
688 | |
---|
689 | TY_A21 = 6*phi*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*(TY_qc121*TY_qc212 + TY_qc112*TY_qc221)*exp(Z1)*(-Z2 + (Z1 + Z2)*exp(Z1))*pow(Z1,2) + exp(Z2)*t3)*pow(Z1 + Z2,-1); |
---|
690 | |
---|
691 | |
---|
692 | t1 = (TY_qb22*TY_qc112 + TY_qc122*(TY_qa12 + TY_qb12 + 2*TY_qc112*Z1)) |
---|
693 | t2 = (2*Z1*(TY_qb22*TY_qc112*(-1 + Z1)*(Z1 + Z2) + TY_qb12*TY_qc122*(-1 + Z1)*(Z1 + Z2) - Z1*(TY_qc122*TY_qc212*Z1 + TY_qc112*(TY_qc122 + TY_qc222)*Z1 + TY_qc112*TY_qc122*Z2)) + TY_qa22*TY_qc112*(Z1 + Z2)*(-2 + pow(Z1,2)) + TY_qa12*TY_qc122*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
694 | t3 = (12*phi*(TY_qa12*TY_qc122 + TY_qa22*TY_qc112*(1 + Z1) + Z1*t1)*(Z1 + Z2)*exp(Z1) - 2*phi*TY_qc112*TY_qc122*(Z1 + Z2)*pow(Z1,2) + exp(2*Z1)*(6*phi*t2 + TY_q22*TY_qc112*(Z1 + Z2)*pow(Z1,3))) |
---|
695 | |
---|
696 | TY_A22 = exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(12*phi*(TY_qc122*TY_qc212 + TY_qc112*TY_qc222)*exp(Z1)*(-Z2 + (Z1 + Z2)*exp(Z1))*pow(Z1,2) + exp(Z2)*t3)*pow(Z1 + Z2,-1); |
---|
697 | |
---|
698 | |
---|
699 | t1 = ((TY_q22*TY_qc112 + TY_qc123*(TY_qc112 + TY_qc212) + TY_qc112*TY_qc223)*Z1 + TY_qc112*TY_qc123*Z2) |
---|
700 | t2 = (TY_qa12*TY_qc123 + TY_qa23*TY_qc112*(1 + Z1) + Z1*(TY_qb23*TY_qc112 + TY_qc123*(TY_qa12 + TY_qb12 + 2*TY_qc112*Z1))) |
---|
701 | t3 = (2*Z1*(TY_qb23*TY_qc112*(-1 + Z1)*(Z1 + Z2) + TY_qb12*TY_qc123*(-1 + Z1)*(Z1 + Z2) - Z1*t1) + TY_qa23*TY_qc112*(Z1 + Z2)*(-2 + pow(Z1,2)) + TY_qa12*TY_qc123*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
702 | |
---|
703 | TY_A23 = 6*phi*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*(TY_qc123*TY_qc212 + TY_qc112*TY_qc223)*exp(Z1)*(-Z2 + (Z1 + Z2)*exp(Z1))*pow(Z1,2) + exp(Z2)*(2*t2*(Z1 + Z2)*exp(Z1) + exp(2*Z1)*t3 - 2*TY_qc112*TY_qc123*(Z1 + Z2)*pow(Z1,2)))*pow(Z1 + Z2,-1); |
---|
704 | |
---|
705 | |
---|
706 | t1 = (TY_qb32*TY_qc112 + (TY_qa23 + TY_qb23)*TY_qc121 + (TY_qa21 + TY_qb21)*TY_qc123 + (TY_qa12 + TY_qb12)*TY_qc132 + TY_q22*TY_qc112*Z1 + 2*(TY_qc121*TY_qc123 + TY_qc112*TY_qc132)*Z1 + TY_qc122*(TY_qa22 + TY_qb22 + TY_qc122*Z1)) |
---|
707 | t2 = (TY_qc132*TY_qc212 + TY_qc123*TY_qc221 + TY_qc122*TY_qc222 + TY_qc121*TY_qc223 + TY_qc112*TY_qc232) |
---|
708 | t3 = ((TY_q22 + TY_qc132)*TY_qc212 + TY_qc123*TY_qc221 + TY_qc122*TY_qc222 + TY_qc121*TY_qc223 + TY_qc112*TY_qc232) |
---|
709 | t4 = (2*TY_qc121*TY_qc123 + 2*TY_qc112*TY_qc132 + pow(TY_qc122,2)) |
---|
710 | t5 = (6*phi*(2*Z1*(TY_qb12*(-1 + Z1)*(Z1 + Z2) - Z1*((TY_qc112 + TY_qc121 + TY_qc212)*Z1 + TY_qc112*Z2)) + TY_qa12*(Z1 + Z2)*(-2 + pow(Z1,2))) + TY_qc122*(Z1 + Z2)*pow(Z1,3)) |
---|
711 | t6 = (-2*(TY_qa22*TY_qc122 + TY_qa21*TY_qc123 + TY_qa12*TY_qc132) - 2*(TY_qb32*TY_qc112 + TY_qb23*TY_qc121 + TY_qb22*TY_qc122 + TY_qb21*TY_qc123 + TY_qb12*TY_qc132)*Z1 + (2*TY_qb32*TY_qc112 + 2*TY_qb23*TY_qc121 + (TY_qa22 + 2*TY_qb22 - TY_qc122)*TY_qc122 + (TY_qa21 + 2*TY_qb21 - 2*TY_qc121)*TY_qc123 + (TY_qa12 + 2*TY_qb12 - 2*TY_qc112)*TY_qc132)*pow(Z1,2)) |
---|
712 | t7 = -2*TY_qa22*TY_qc122*Z1 - 2*TY_qa21*TY_qc123*Z1 - 2*TY_qa12*TY_qc132*Z1 + TY_qa32*TY_qc112*(Z1 + Z2)*(-2 + pow(Z1,2)) + TY_qa23*TY_qc121*(Z1 + Z2)*(-2 + pow(Z1,2)) - 2*TY_qb32*TY_qc112*pow(Z1,2) - 2*TY_qb23*TY_qc121*pow(Z1,2) - 2*TY_qb22*TY_qc122*pow(Z1,2) - 2*TY_qb21*TY_qc123*pow(Z1,2) - 2*TY_qb12*TY_qc132*pow(Z1,2) |
---|
713 | t8 = Z2*t6 + 2*TY_qb32*TY_qc112*pow(Z1,3) + 2*TY_qb23*TY_qc121*pow(Z1,3) + TY_qa22*TY_qc122*pow(Z1,3) + 2*TY_qb22*TY_qc122*pow(Z1,3) + TY_qa21*TY_qc123*pow(Z1,3) + 2*TY_qb21*TY_qc123*pow(Z1,3) - 2*TY_qc121*TY_qc123*pow(Z1,3) + TY_qa12*TY_qc132*pow(Z1,3) |
---|
714 | t9 = (t7 + t8 + 2*TY_qb12*TY_qc132*pow(Z1,3) - 2*TY_qc112*TY_qc132*pow(Z1,3) - 2*TY_qc132*TY_qc212*pow(Z1,3) - 2*TY_qc123*TY_qc221*pow(Z1,3) - 2*TY_qc122*TY_qc222*pow(Z1,3) - 2*TY_qc121*TY_qc223*pow(Z1,3) - 2*TY_qc112*TY_qc232*pow(Z1,3) - pow(TY_qc122,2)*pow(Z1,3)) |
---|
715 | t10 = (12*phi*(TY_qa23*TY_qc121 + TY_qa22*TY_qc122 + TY_qa21*TY_qc123 + TY_qa12*TY_qc132 + TY_qa32*TY_qc112*(1 + Z1) + Z1*t1)*(Z1 + Z2)*exp(Z1 + Z2) - 12*phi*t2*Z2*exp(Z1)*pow(Z1,2) + 12*phi*t3*(Z1 + Z2)*exp(2*Z1)*pow(Z1,2) - 6*phi*(Z1 + Z2)*exp(Z2)*t4*pow(Z1,2) + exp(2*Z1 + Z2)*(TY_q22*t5 + 6*phi*t9)) |
---|
716 | |
---|
717 | TY_A32 = exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*t10*pow(Z1 + Z2,-1); |
---|
718 | |
---|
719 | |
---|
720 | t1 = ((-(TY_qc132*TY_qc221) - TY_qc121*TY_qc232)*Z2 + ((TY_q22 + TY_qc132)*TY_qc221 + TY_qc121*TY_qc232)*(Z1 + Z2)*exp(Z1)) |
---|
721 | t2 = (TY_qa21*TY_qc132 + TY_qa32*TY_qc121*(1 + Z1) + Z1*(TY_qb32*TY_qc121 + (TY_qa21 + TY_qb21)*TY_qc132 + TY_qc121*(TY_q22 + 2*TY_qc132)*Z1)) |
---|
722 | t3 = (-2*(TY_qa32*TY_qc121 + TY_qa21*(TY_q22 + TY_qc132)) - 2*(TY_qb32*TY_qc121 + TY_qb21*(TY_q22 + TY_qc132))*Z1 + (TY_q22*(TY_qa21 + 2*TY_qb21 - 2*TY_qc121) + TY_qc121*(TY_qa32 + 2*TY_qb32 - 2*TY_qc132) + (TY_qa21 + 2*TY_qb21)*TY_qc132)*pow(Z1,2)) |
---|
723 | t4 = (-2*(TY_qa32*TY_qc121 + TY_qa21*(TY_q22 + TY_qc132)) - 2*(TY_qb32*TY_qc121 + TY_qb21*(TY_q22 + TY_qc132))*Z1 + (TY_qa32*TY_qc121 + 2*TY_qb32*TY_qc121 + TY_qa21*TY_qc132 + 2*TY_qb21*TY_qc132 - 2*TY_qc121*TY_qc132 + TY_q22*(TY_qa21 + 2*TY_qb21 - 2*TY_qc121 - 2*TY_qc221) - 2*TY_qc132*TY_qc221 - 2*TY_qc121*TY_qc232)*pow(Z1,2)) |
---|
724 | |
---|
725 | TY_A41 = 6*phi*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*exp(Z1)*t1*pow(Z1,2) + exp(Z2)*(2*t2*(Z1 + Z2)*exp(Z1) - 2*TY_qc121*TY_qc132*(Z1 + Z2)*pow(Z1,2) + exp(2*Z1)*(Z2*t3 + Z1*t4)))*pow(Z1 + Z2,-1); |
---|
726 | |
---|
727 | |
---|
728 | t1 = (TY_qb32*TY_qc122 + (TY_qa22 + TY_qb22)*TY_qc132 + TY_qc122*(TY_q22 + 2*TY_qc132)*Z1) |
---|
729 | t2 = (TY_qc132*TY_qc222 + TY_qc122*TY_qc232) |
---|
730 | t3 = ((TY_q22 + TY_qc132)*TY_qc222 + TY_qc122*TY_qc232) |
---|
731 | t4 = (2*Z1*(TY_qb32*TY_qc122*(-1 + Z1)*(Z1 + Z2) + TY_qb22*TY_qc132*(-1 + Z1)*(Z1 + Z2) - Z1*(TY_qc132*TY_qc222*Z1 + TY_qc122*(TY_qc132 + TY_qc232)*Z1 + TY_qc122*TY_qc132*Z2)) + TY_qa32*TY_qc122*(Z1 + Z2)*(-2 + pow(Z1,2)) + TY_qa22*TY_qc132*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
732 | t5 = (6*phi*t4 + (Z1 + Z2)*pow(TY_q22,2)*pow(Z1,3) + TY_q22*(6*phi*(2*Z1*(TY_qb22*(-1 + Z1)*(Z1 + Z2) - Z1*((TY_qc122 + TY_qc222)*Z1 + TY_qc122*Z2)) + TY_qa22*(Z1 + Z2)*(-2 + pow(Z1,2))) + TY_qc132*(Z1 + Z2)*pow(Z1,3))) |
---|
733 | t6 = (12*phi*(TY_qa22*TY_qc132 + TY_qa32*TY_qc122*(1 + Z1) + Z1*t1)*(Z1 + Z2)*exp(Z1 + Z2) - 12*phi*t2*Z2*exp(Z1)*pow(Z1,2) + 12*phi*t3*(Z1 + Z2)*exp(2*Z1)*pow(Z1,2) - 12*phi*TY_qc122*TY_qc132*(Z1 + Z2)*exp(Z2)*pow(Z1,2) + exp(2*Z1 + Z2)*t5) |
---|
734 | |
---|
735 | TY_A42 = exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*t6*pow(Z1 + Z2,-1); |
---|
736 | |
---|
737 | |
---|
738 | t1 = ((TY_qc132*TY_qc223 + TY_qc123*TY_qc232)*Z2 - ((TY_q22 + TY_qc132)*TY_qc223 + TY_qc123*TY_qc232)*(Z1 + Z2)*exp(Z1)) |
---|
739 | t2 = (TY_qa23*TY_qc132 + TY_qa32*TY_qc123*(1 + Z1) + Z1*(TY_qb32*TY_qc123 + (TY_qa23 + TY_qb23)*TY_qc132 + TY_qc123*(TY_q22 + 2*TY_qc132)*Z1)) |
---|
740 | t3 = (2*TY_qa32*TY_qc123 + 2*TY_qa23*(TY_q22 + TY_qc132) + 2*(TY_qb32*TY_qc123 + TY_qb23*(TY_q22 + TY_qc132))*Z1 - (TY_q22*(TY_qa23 + 2*TY_qb23 - 2*TY_qc123) + TY_qc123*(TY_qa32 + 2*TY_qb32 - 2*TY_qc132) + (TY_qa23 + 2*TY_qb23)*TY_qc132)*pow(Z1,2)) |
---|
741 | t4 = (2*TY_qa32*TY_qc123 + 2*TY_qa23*(TY_q22 + TY_qc132) + 2*(TY_qb32*TY_qc123 + TY_qb23*(TY_q22 + TY_qc132))*Z1 + (-(TY_qa32*TY_qc123) - (TY_qa23 + 2*TY_qb23)*TY_qc132 + TY_q22*(-TY_qa23 + 2*(-TY_qb23 + TY_qc123 + TY_qc132 + TY_qc223)) + 2*(-(TY_qb32*TY_qc123) + TY_qc132*(TY_qc123 + TY_qc223) + TY_qc123*TY_qc232) + 2*pow(TY_q22,2))*pow(Z1,2)) |
---|
742 | |
---|
743 | TY_A43 = -6*phi*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*exp(Z1)*t1*pow(Z1,2) + exp(Z2)*(-2*t2*(Z1 + Z2)*exp(Z1) + 2*TY_qc123*TY_qc132*(Z1 + Z2)*pow(Z1,2) + exp(2*Z1)*(Z2*t3 + Z1*t4)))*pow(Z1 + Z2,-1); |
---|
744 | |
---|
745 | |
---|
746 | t1 = (TY_qc132*Z2 - (TY_q22 + TY_qc132)*(Z1 + Z2)*exp(Z1)) |
---|
747 | t2 = (Z1*(-2*TY_qb32*(-1 + Z1)*(Z1 + Z2) + Z1*((TY_q22 + TY_qc132 + 2*TY_qc232)*Z1 + (TY_q22 + TY_qc132)*Z2)) - TY_qa32*(Z1 + Z2)*(-2 + pow(Z1,2))) |
---|
748 | t3 = ((TY_q22 + TY_qc132)*exp(2*Z1)*t2 + (Z1 + Z2)*pow(TY_qc132,2)*pow(Z1,2) - 2*TY_qc132*(Z1 + Z2)*exp(Z1)*(TY_qa32 + (TY_qa32 + TY_qb32)*Z1 + (TY_q22 + TY_qc132)*pow(Z1,2))) |
---|
749 | |
---|
750 | TY_A52 = -6*phi*exp(-2*Z1 - Z2)*pow(TY_q22,-2)*pow(Z1,-3)*(2*TY_qc232*exp(Z1)*t1*pow(Z1,2) + exp(Z2)*t3)*pow(Z1 + Z2,-1); |
---|
751 | |
---|
752 | |
---|
753 | // normalize A |
---|
754 | // /*double norm_A = sqrt(pow(TY_A52,2)+pow(TY_A43,2)+pow(TY_A42, 2)+pow(TY_A41, 2)+pow(TY_A32, 2)+ |
---|
755 | // pow(TY_A23,2)+pow(TY_A22,2)+pow(TY_A21, 2)+pow(TY_A12, 2)); |
---|
756 | // TY_A12 /= norm_A; |
---|
757 | // TY_A21 /= norm_A; |
---|
758 | // TY_A22 /= norm_A; |
---|
759 | // TY_A23 /= norm_A; |
---|
760 | // TY_A32 /= norm_A; |
---|
761 | // TY_A41 /= norm_A; |
---|
762 | // TY_A42 /= norm_A; |
---|
763 | // TY_A43 /= norm_A; |
---|
764 | // TY_A52 /= norm_A;*/ |
---|
765 | |
---|
766 | if( prnt ) |
---|
767 | printf "\rNonlinear equation 1 = \r" |
---|
768 | // printf "%f\t\t%f\t\t%f\r", 0., TY_A12, 0. |
---|
769 | // printf "%f\t\t%f\t\t%f\r", TY_A21, TY_A22, TY_A23 |
---|
770 | // printf "%f\t\t%f\t\t%f\r", 0., TY_A32, 0. |
---|
771 | // printf "%f\t\t%f\t\t%f\r", TY_A41, TY_A42, TY_A43 |
---|
772 | // printf "%f\t\t%f\t\t%f\r", 0., TY_A52, 0. |
---|
773 | printf "TY_A12 = %15.12g\r",TY_A12 |
---|
774 | printf "TY_A21 = %15.12g\r",TY_A21 |
---|
775 | printf "TY_A22 = %15.12g\r",TY_A22 |
---|
776 | printf "TY_A23 = %15.12g\r",TY_A23 |
---|
777 | printf "TY_A32 = %15.12g\r",TY_A32 |
---|
778 | printf "TY_A41 = %15.12g\r",TY_A41 |
---|
779 | printf "TY_A42 = %15.12g\r",TY_A42 |
---|
780 | printf "TY_A43 = %15.12g\r",TY_A43 |
---|
781 | printf "TY_A52 = %15.12g\r",TY_A52 |
---|
782 | endif |
---|
783 | |
---|
784 | // /* coefficient matrices of nonlinear equation 2 */ |
---|
785 | NVAR TY_B12 = root:yuk:TY_B12 |
---|
786 | NVAR TY_B14 = root:yuk:TY_B14 |
---|
787 | NVAR TY_B21 = root:yuk:TY_B21 |
---|
788 | NVAR TY_B22 = root:yuk:TY_B22 |
---|
789 | NVAR TY_B23 = root:yuk:TY_B23 |
---|
790 | NVAR TY_B24 = root:yuk:TY_B24 |
---|
791 | NVAR TY_B25 = root:yuk:TY_B25 |
---|
792 | NVAR TY_B32 = root:yuk:TY_B32 |
---|
793 | NVAR TY_B34 = root:yuk:TY_B34 |
---|
794 | |
---|
795 | |
---|
796 | |
---|
797 | t1 = (TY_qa12*TY_qc221 + TY_qa21*TY_qc212*(1 + Z2) + Z2*(TY_qb21*TY_qc212 + TY_qc221*(TY_qa12 + TY_qb12 + 2*TY_qc212*Z2))) |
---|
798 | t2 = (-(TY_qc121*TY_qc212) - TY_qc112*TY_qc221) |
---|
799 | t3 = (TY_qb21*TY_qc212*(-1 + Z2)*(Z1 + Z2) + TY_qb12*TY_qc221*(-1 + Z2)*(Z1 + Z2) - Z2*(TY_qc212*TY_qc221*Z1 + TY_qc112*TY_qc221*Z2 + TY_qc212*(TY_qc121 + TY_qc221)*Z2)) |
---|
800 | t4 = (exp(Z1)*(2*Z2*t3 + TY_qa21*TY_qc212*(Z1 + Z2)*(-2 + pow(Z2,2)) + TY_qa12*TY_qc221*(Z1 + Z2)*(-2 + pow(Z2,2))) + 2*(TY_qc121*TY_qc212 + TY_qc112*TY_qc221)*(Z1 + Z2)*pow(Z2,2)) |
---|
801 | |
---|
802 | TY_B12 = 6*phi*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(-2*TY_qc212*TY_qc221*(Z1 + Z2)*exp(Z1)*pow(Z2,2) + 2*exp(Z2)*((Z1 + Z2)*t1*exp(Z1) + t2*Z1*pow(Z2,2)) + exp(2*Z2)*t4)*pow(Z1 + Z2,-1); |
---|
803 | |
---|
804 | |
---|
805 | |
---|
806 | |
---|
807 | t1 = ((Z1 + Z2)*(TY_qa12*TY_qc223 + TY_qa23*TY_qc212*(1 + Z2) + Z2*(TY_qb23*TY_qc212 + (TY_qa12 + TY_qb12)*TY_qc223 + TY_qc212*(TY_q22 + 2*TY_qc223)*Z2))*exp(Z1) + (-(TY_qc123*TY_qc212) - TY_qc112*TY_qc223)*Z1*pow(Z2,2)) |
---|
808 | t2 = (TY_qc123*TY_qc212 + TY_qc112*(TY_q22 + TY_qc223)) |
---|
809 | t3 = (TY_qa23*TY_qc212 + TY_qa12*(TY_q22 + TY_qc223)) |
---|
810 | t4 = (TY_qa23*TY_qc212 + TY_qa12*(TY_q22 + TY_qc223) + (TY_qb23*TY_qc212 + TY_qb12*(TY_q22 + TY_qc223))*Z1) |
---|
811 | t5 = (-2*(TY_qb23*TY_qc212 + TY_qb12*(TY_q22 + TY_qc223)) + (TY_q22*(TY_qa12 + 2*TY_qb12 - 2*TY_qc212) + TY_qc212*(TY_qa23 + 2*TY_qb23 - 2*TY_qc223) + (TY_qa12 + 2*TY_qb12)*TY_qc223)*Z1) |
---|
812 | t6 = (TY_q22*(TY_qa12 + 2*TY_qb12 - 2*TY_qc112 - 2*TY_qc212) + TY_qc212*(TY_qa23 + 2*TY_qb23 - 2*TY_qc123 - 2*TY_qc223) + (TY_qa12 + 2*TY_qb12 - 2*TY_qc112)*TY_qc223) |
---|
813 | |
---|
814 | TY_B14 = 6*phi*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(-2*TY_qc212*TY_qc223*(Z1 + Z2)*exp(Z1)*pow(Z2,2) + 2*exp(Z2)*t1 + exp(2*Z2)*(2*t2*(Z1 + Z2)*pow(Z2,2) + exp(Z1)*(-2*t3*Z1 - 2*t4*Z2 + t5*pow(Z2,2) + t6*pow(Z2,3))))*pow(Z1 + Z2,-1); |
---|
815 | |
---|
816 | |
---|
817 | |
---|
818 | t1 = (TY_qc221*(Z1 + Z2)*exp(Z1)*pow(Z2,2)) |
---|
819 | t2 = (exp(Z1)*(Z2*(2*TY_qb21*(-1 + Z2)*(Z1 + Z2) - Z2*(2*TY_qc121*Z2 + TY_qc221*(Z1 + Z2))) + TY_qa21*(Z1 + Z2)*(-2 + pow(Z2,2))) + 2*TY_qc121*(Z1 + Z2)*pow(Z2,2)) |
---|
820 | t3 = (-(TY_qc121*Z1*pow(Z2,2)) + (Z1 + Z2)*exp(Z1)*(TY_qa21 + (TY_qa21 + TY_qb21)*Z2 + TY_qc221*pow(Z2,2))) |
---|
821 | |
---|
822 | TY_B21 = 6*phi*TY_qc221*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(-t1 + exp(2*Z2)*t2 + 2*exp(Z2)*t3)*pow(Z1 + Z2,-1); |
---|
823 | |
---|
824 | |
---|
825 | |
---|
826 | t1 = (TY_qb22*TY_qc221 + TY_qc222*(TY_qa21 + TY_qb21 + 2*TY_qc221*Z2)) |
---|
827 | t2 = ((Z1 + Z2)*(TY_qa21*TY_qc222 + TY_qa22*TY_qc221*(1 + Z2) + Z2*t1)*exp(Z1) + (-(TY_qc122*TY_qc221) - TY_qc121*TY_qc222)*Z1*pow(Z2,2)) |
---|
828 | t3 = (TY_qc122*TY_qc221 + TY_qc121*TY_qc222) |
---|
829 | t4 = (TY_qb22*TY_qc221*(-1 + Z2)*(Z1 + Z2) + TY_qb21*TY_qc222*(-1 + Z2)*(Z1 + Z2) - Z2*(TY_qc221*TY_qc222*Z1 + TY_qc121*TY_qc222*Z2 + TY_qc221*(TY_qc122 + TY_qc222)*Z2)) |
---|
830 | t5 = (6*phi*(2*Z2*t4 + TY_qa22*TY_qc221*(Z1 + Z2)*(-2 + pow(Z2,2)) + TY_qa21*TY_qc222*(Z1 + Z2)*(-2 + pow(Z2,2))) + TY_q22*TY_qc221*(Z1 + Z2)*pow(Z2,3)) |
---|
831 | |
---|
832 | TY_B22 = exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(-12*phi*TY_qc221*TY_qc222*(Z1 + Z2)*exp(Z1)*pow(Z2,2) + 12*phi*exp(Z2)*t2 + exp(2*Z2)*(12*phi*t3*(Z1 + Z2)*pow(Z2,2) + exp(Z1)*t5))*pow(Z1 + Z2,-1); |
---|
833 | |
---|
834 | |
---|
835 | |
---|
836 | |
---|
837 | t1 = (2*TY_qc221*TY_qc223 + 2*TY_qc212*TY_qc232 + pow(TY_qc222,2)) |
---|
838 | t2 = (TY_qb32*TY_qc212 + (TY_qa23 + TY_qb23)*TY_qc221 + (TY_qa22 + TY_qb22)*TY_qc222 + (TY_qa21 + TY_qb21)*TY_qc223 + (TY_qa12 + TY_qb12)*TY_qc232 + Z2*(TY_q22*TY_qc221 + 2*TY_qc221*TY_qc223 + 2*TY_qc212*TY_qc232 + pow(TY_qc222,2))) |
---|
839 | t3 = (-(TY_qc132*TY_qc212) - TY_qc123*TY_qc221 - TY_qc122*TY_qc222 - TY_qc121*TY_qc223 - TY_qc112*TY_qc232) |
---|
840 | t4 = (TY_qc132*TY_qc212 + TY_qc123*TY_qc221 + TY_qc122*TY_qc222 + TY_qc121*(TY_q22 + TY_qc223) + TY_qc112*TY_qc232) |
---|
841 | t5 = (TY_qa32*TY_qc212 + TY_qa23*TY_qc221 + TY_qa22*TY_qc222 + TY_qa21*(TY_q22 + TY_qc223) + TY_qa12*TY_qc232) |
---|
842 | t6 = (TY_qa32*TY_qc212 + TY_qa23*TY_qc221 + TY_qa22*TY_qc222 + TY_qa21*(TY_q22 + TY_qc223) + TY_qa12*TY_qc232 + (TY_qb32*TY_qc212 + TY_qb23*TY_qc221 + TY_qb22*TY_qc222 + TY_qb21*(TY_q22 + TY_qc223) + TY_qb12*TY_qc232)*Z1) |
---|
843 | t7 = (TY_qb32*TY_qc212 + TY_qb23*TY_qc221 + TY_qb22*TY_qc222 + TY_qb21*(TY_q22 + TY_qc223) + TY_qb12*TY_qc232) |
---|
844 | t8 = (TY_q22*(TY_qa21 + 2*TY_qb21 - 2*TY_qc221) + (TY_qa22 + 2*TY_qb22 - TY_qc222)*TY_qc222 + TY_qc221*(TY_qa23 + 2*TY_qb23 - 2*TY_qc223) + TY_qa21*TY_qc223 + 2*TY_qb21*TY_qc223 + TY_qc212*(TY_qa32 + 2*TY_qb32 - 2*TY_qc232) + TY_qa12*TY_qc232 + 2*TY_qb12*TY_qc232) |
---|
845 | t9 = (TY_qa21 + 2*TY_qb21 - 2*TY_qc121 - 2*TY_qc212 - 2*TY_qc221) |
---|
846 | t10 = (TY_qa22 + 2*TY_qb22 - 2*TY_qc122 - TY_qc222) |
---|
847 | t11 = (TY_qa23 + 2*TY_qb23 - 2*TY_qc123 - 2*TY_qc223) |
---|
848 | t12 = (TY_qa32 + 2*TY_qb32 - 2*TY_qc132 - 2*TY_qc232) |
---|
849 | t13 = ((Z1 + Z2)*exp(Z1)*(TY_qa23*TY_qc221 + TY_qa22*TY_qc222 + TY_qa21*TY_qc223 + TY_qa12*TY_qc232 + TY_qa32*TY_qc212*(1 + Z2) + Z2*t2) + t3*Z1*pow(Z2,2)) |
---|
850 | t14 = (TY_q22*t9 + t10*TY_qc222 + TY_qc221*t11 + (TY_qa21 + 2*TY_qb21 - 2*TY_qc121)*TY_qc223 + TY_qc212*t12 + (TY_qa12 + 2*TY_qb12 - 2*TY_qc112)*TY_qc232) |
---|
851 | t15 = (-6*phi*(Z1 + Z2)*exp(Z1)*t1*pow(Z2,2) + 12*phi*exp(Z2)*t13 + exp(2*Z2)*(12*phi*t4*(Z1 + Z2)*pow(Z2,2) + exp(Z1)*(TY_q22*TY_qc222*(Z1 + Z2)*pow(Z2,3) - 6*phi*(2*t5*Z1 + 2*t6*Z2 - (-2*t7 + t8*Z1)*pow(Z2,2) - t14*pow(Z2,3))))) |
---|
852 | |
---|
853 | TY_B23 = exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*t15*pow(Z1 + Z2,-1); |
---|
854 | |
---|
855 | |
---|
856 | t1 = (TY_qa22*TY_qc223 + TY_qa23*TY_qc222*(1 + Z2) + Z2*(TY_qb23*TY_qc222 + (TY_qa22 + TY_qb22)*TY_qc223 + TY_qc222*(TY_q22 + 2*TY_qc223)*Z2)) |
---|
857 | t2 = (TY_qc123*TY_qc222 + TY_qc122*TY_qc223) |
---|
858 | t3 = (TY_qc123*TY_qc222 + TY_qc122*(TY_q22 + TY_qc223)) |
---|
859 | t4 = (2*Z2*(TY_qb23*TY_qc222*(-1 + Z2)*(Z1 + Z2) + TY_qb22*TY_qc223*(-1 + Z2)*(Z1 + Z2) - Z2*(TY_qc222*TY_qc223*Z1 + TY_qc122*TY_qc223*Z2 + TY_qc222*(TY_qc123 + TY_qc223)*Z2)) + TY_qa23*TY_qc222*(Z1 + Z2)*(-2 + pow(Z2,2)) + TY_qa22*TY_qc223*(Z1 + Z2)*(-2 + pow(Z2,2))) |
---|
860 | t5 = (6*phi*t4 + (Z1 + Z2)*pow(TY_q22,2)*pow(Z2,3) + TY_q22*(6*phi*(2*Z2*(TY_qb22*(-1 + Z2)*(Z1 + Z2) - Z2*(TY_qc222*Z1 + (TY_qc122 + TY_qc222)*Z2)) + TY_qa22*(Z1 + Z2)*(-2 + pow(Z2,2))) + TY_qc223*(Z1 + Z2)*pow(Z2,3))) |
---|
861 | t6 = (12*phi*(Z1 + Z2)*t1*exp(Z1 + Z2) - 12*phi*TY_qc222*TY_qc223*(Z1 + Z2)*exp(Z1)*pow(Z2,2) - 12*phi*t2*Z1*exp(Z2)*pow(Z2,2) + 12*phi*t3*(Z1 + Z2)*exp(2*Z2)*pow(Z2,2) + exp(Z1 + 2*Z2)*t5) |
---|
862 | |
---|
863 | TY_B24 = exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*t6*pow(Z1 + Z2,-1); |
---|
864 | |
---|
865 | |
---|
866 | t1 = (exp(Z1)*(Z2*(-2*TY_qb23*(-1 + Z2)*(Z1 + Z2) + Z2*((TY_q22 + TY_qc223)*Z1 + (TY_q22 + 2*TY_qc123 + TY_qc223)*Z2)) - TY_qa23*(Z1 + Z2)*(-2 + pow(Z2,2))) - 2*TY_qc123*(Z1 + Z2)*pow(Z2,2)) |
---|
867 | t2 = ((Z1 + Z2)*exp(Z1)*pow(TY_qc223,2)*pow(Z2,2) + (TY_q22 + TY_qc223)*exp(2*Z2)*t1 + 2*TY_qc223*exp(Z2)*(TY_qc123*Z1*pow(Z2,2) - (Z1 + Z2)*exp(Z1)*(TY_qa23 + (TY_qa23 + TY_qb23)*Z2 + (TY_q22 + TY_qc223)*pow(Z2,2)))) |
---|
868 | |
---|
869 | TY_B25 = -6*phi*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*t2*pow(Z1 + Z2,-1); |
---|
870 | |
---|
871 | |
---|
872 | t1 = (TY_qa21*TY_qc232 + TY_qa32*TY_qc221*(1 + Z2) + Z2*(TY_qb32*TY_qc221 + TY_qc232*(TY_qa21 + TY_qb21 + 2*TY_qc221*Z2))) |
---|
873 | t2 = (-(TY_qc132*TY_qc221) - TY_qc121*TY_qc232) |
---|
874 | t3 = (TY_qb32*TY_qc221*(-1 + Z2)*(Z1 + Z2) + TY_qb21*TY_qc232*(-1 + Z2)*(Z1 + Z2) - Z2*(TY_qc221*TY_qc232*Z1 + TY_qc121*TY_qc232*Z2 + TY_qc221*(TY_q22 + TY_qc132 + TY_qc232)*Z2)) |
---|
875 | t4 = (exp(Z1)*(2*Z2*t3 + TY_qa32*TY_qc221*(Z1 + Z2)*(-2 + pow(Z2,2)) + TY_qa21*TY_qc232*(Z1 + Z2)*(-2 + pow(Z2,2))) + 2*(TY_qc132*TY_qc221 + TY_qc121*TY_qc232)*(Z1 + Z2)*pow(Z2,2)) |
---|
876 | |
---|
877 | TY_B32 = 6*phi*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(-2*TY_qc221*TY_qc232*(Z1 + Z2)*exp(Z1)*pow(Z2,2) + 2*exp(Z2)*((Z1 + Z2)*t1*exp(Z1) + t2*Z1*pow(Z2,2)) + exp(2*Z2)*t4)*pow(Z1 + Z2,-1); |
---|
878 | |
---|
879 | |
---|
880 | t1 = (-((Z1 + Z2)*(TY_qa23*TY_qc232 + TY_qa32*TY_qc223*(1 + Z2) + Z2*(TY_qb32*TY_qc223 + TY_qc232*(TY_qa23 + TY_qb23 + TY_q22*Z2 + 2*TY_qc223*Z2)))*exp(Z1)) + (TY_qc132*TY_qc223 + TY_qc123*TY_qc232)*Z1*pow(Z2,2)) |
---|
881 | t2 = (TY_qc132*(TY_q22 + TY_qc223) + TY_qc123*TY_qc232) |
---|
882 | t3 = (TY_qa32*(TY_q22 + TY_qc223) + TY_qa23*TY_qc232) |
---|
883 | t4 = (TY_qa32*(TY_q22 + TY_qc223) + TY_qa23*TY_qc232 + (TY_qb32*(TY_q22 + TY_qc223) + TY_qb23*TY_qc232)*Z1) |
---|
884 | t5 = (-2*(TY_qb32*(TY_q22 + TY_qc223) + TY_qb23*TY_qc232) + ((TY_qa32 + 2*TY_qb32)*(TY_q22 + TY_qc223) + (-2*TY_q22 + TY_qa23 + 2*TY_qb23 - 2*TY_qc223)*TY_qc232)*Z1) |
---|
885 | t6 = (2*t3*Z1 + 2*t4*Z2 - t5*pow(Z2,2) + ((2*TY_q22 - TY_qa32 - 2*TY_qb32 + 2*TY_qc132)*(TY_q22 + TY_qc223) + (2*TY_q22 - TY_qa23 + 2*(-TY_qb23 + TY_qc123 + TY_qc223))*TY_qc232)*pow(Z2,3)) |
---|
886 | |
---|
887 | TY_B34 = -6*phi*exp(-Z1 - 2*Z2)*pow(TY_q22,-2)*pow(Z2,-3)*(2*TY_qc223*TY_qc232*(Z1 + Z2)*exp(Z1)*pow(Z2,2) + 2*exp(Z2)*t1 + exp(2*Z2)*(-2*t2*(Z1 + Z2)*pow(Z2,2) + exp(Z1)*t6))*pow(Z1 + Z2,-1); |
---|
888 | |
---|
889 | |
---|
890 | // /*double norm_B = sqrt(pow(TY_B12, 2)+pow(TY_B14, 2)+pow(TY_B21, 2)+pow(TY_B22, 2)+pow(TY_B23, 2)+pow(TY_B24, 2)+pow(TY_B25, 2)+pow(TY_B32, 2)+pow(TY_B34, 2)); |
---|
891 | // |
---|
892 | // TY_B12 /= norm_B; |
---|
893 | // TY_B14 /= norm_B; |
---|
894 | // TY_B21 /= norm_B; |
---|
895 | // TY_B22 /= norm_B; |
---|
896 | // TY_B23 /= norm_B; |
---|
897 | // TY_B24 /= norm_B; |
---|
898 | // TY_B25 /= norm_B; |
---|
899 | // TY_B32 /= norm_B; |
---|
900 | // TY_B34 /= norm_B; */ |
---|
901 | |
---|
902 | if( prnt ) |
---|
903 | printf "\rNonlinear equation 2 = \r" |
---|
904 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., TY_B12, 0., TY_B14, 0. |
---|
905 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\r", TY_B21, TY_B22, TY_B23, TY_B24, TY_B25 |
---|
906 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., TY_B32, 0., TY_B34, 0. |
---|
907 | printf "TY_B12 = %15.12g\r",TY_B12 |
---|
908 | printf "TY_B14 = %15.12g\r",TY_B14 |
---|
909 | printf "TY_B21 = %15.12g\r",TY_B21 |
---|
910 | printf "TY_B22 = %15.12g\r",TY_B22 |
---|
911 | printf "TY_B23 = %15.12g\r",TY_B23 |
---|
912 | printf "TY_B24 = %15.12g\r",TY_B24 |
---|
913 | printf "TY_B25 = %15.12g\r",TY_B25 |
---|
914 | printf "TY_B32 = %15.12g\r",TY_B32 |
---|
915 | printf "TY_B34 = %15.12g\r",TY_B34 |
---|
916 | endif |
---|
917 | |
---|
918 | // /* decrease order of nonlinear equation 1 by means of equation 2 */ |
---|
919 | NVAR TY_F14 = root:yuk:TY_F14 |
---|
920 | NVAR TY_F16 = root:yuk:TY_F16 |
---|
921 | NVAR TY_F18 = root:yuk:TY_F18 |
---|
922 | NVAR TY_F23 = root:yuk:TY_F23 |
---|
923 | NVAR TY_F24 = root:yuk:TY_F24 |
---|
924 | NVAR TY_F25 = root:yuk:TY_F25 |
---|
925 | NVAR TY_F26 = root:yuk:TY_F26 |
---|
926 | NVAR TY_F27 = root:yuk:TY_F27 |
---|
927 | NVAR TY_F28 = root:yuk:TY_F28 |
---|
928 | NVAR TY_F29 = root:yuk:TY_F29 |
---|
929 | NVAR TY_F32 = root:yuk:TY_F32 |
---|
930 | NVAR TY_F33 = root:yuk:TY_F33 |
---|
931 | NVAR TY_F34 = root:yuk:TY_F34 |
---|
932 | NVAR TY_F35 = root:yuk:TY_F35 |
---|
933 | NVAR TY_F36 = root:yuk:TY_F36 |
---|
934 | NVAR TY_F37 = root:yuk:TY_F37 |
---|
935 | NVAR TY_F38 = root:yuk:TY_F38 |
---|
936 | NVAR TY_F39 = root:yuk:TY_F39 |
---|
937 | NVAR TY_F310 = root:yuk:TY_F310 |
---|
938 | |
---|
939 | TY_F14 = -(TY_A32*TY_B12*TY_B32) + TY_A52*pow(TY_B12,2) + TY_A12*pow(TY_B32,2) |
---|
940 | TY_F16 = 2*TY_A52*TY_B12*TY_B14 - TY_A32*TY_B14*TY_B32 - TY_A32*TY_B12*TY_B34 + 2*TY_A12*TY_B32*TY_B34 |
---|
941 | TY_F18 = -(TY_A32*TY_B14*TY_B34) + TY_A52*pow(TY_B14,2) + TY_A12*pow(TY_B34,2) |
---|
942 | TY_F23 = 2*TY_A52*TY_B12*TY_B21 - TY_A41*TY_B12*TY_B32 - TY_A32*TY_B21*TY_B32 + TY_A21*pow(TY_B32,2) |
---|
943 | TY_F24 = 2*TY_A52*TY_B12*TY_B22 - TY_A42*TY_B12*TY_B32 - TY_A32*TY_B22*TY_B32 + TY_A22*pow(TY_B32,2) |
---|
944 | TY_F25 = 2*TY_A52*TY_B14*TY_B21 + 2*TY_A52*TY_B12*TY_B23 - TY_A43*TY_B12*TY_B32 - TY_A41*TY_B14*TY_B32 - TY_A32*TY_B23*TY_B32 - TY_A41*TY_B12*TY_B34 - TY_A32*TY_B21*TY_B34 + 2*TY_A21*TY_B32*TY_B34 + TY_A23*pow(TY_B32,2) |
---|
945 | TY_F26 = 2*TY_A52*TY_B14*TY_B22 + 2*TY_A52*TY_B12*TY_B24 - TY_A42*TY_B14*TY_B32 - TY_A32*TY_B24*TY_B32 - TY_A42*TY_B12*TY_B34 - TY_A32*TY_B22*TY_B34 + 2*TY_A22*TY_B32*TY_B34 |
---|
946 | TY_F27 = 2*TY_A52*TY_B14*TY_B23 + 2*TY_A52*TY_B12*TY_B25 - TY_A43*TY_B14*TY_B32 - TY_A32*TY_B25*TY_B32 - TY_A43*TY_B12*TY_B34 - TY_A41*TY_B14*TY_B34 - TY_A32*TY_B23*TY_B34 + 2*TY_A23*TY_B32*TY_B34 + TY_A21*pow(TY_B34,2) |
---|
947 | TY_F28 = 2*TY_A52*TY_B14*TY_B24 - TY_A42*TY_B14*TY_B34 - TY_A32*TY_B24*TY_B34 + TY_A22*pow(TY_B34,2) |
---|
948 | TY_F29 = 2*TY_A52*TY_B14*TY_B25 - TY_A43*TY_B14*TY_B34 - TY_A32*TY_B25*TY_B34 + TY_A23*pow(TY_B34,2) |
---|
949 | TY_F32 = -(TY_A41*TY_B21*TY_B32) + TY_A52*pow(TY_B21,2) |
---|
950 | TY_F33 = 2*TY_A52*TY_B21*TY_B22 - TY_A42*TY_B21*TY_B32 - TY_A41*TY_B22*TY_B32 |
---|
951 | TY_F34 = 2*TY_A52*TY_B21*TY_B23 - TY_A43*TY_B21*TY_B32 - TY_A42*TY_B22*TY_B32 - TY_A41*TY_B23*TY_B32 - TY_A41*TY_B21*TY_B34 + TY_A52*pow(TY_B22,2) |
---|
952 | TY_F35 = 2*TY_A52*TY_B22*TY_B23 + 2*TY_A52*TY_B21*TY_B24 - TY_A43*TY_B22*TY_B32 - TY_A42*TY_B23*TY_B32 - TY_A41*TY_B24*TY_B32 - TY_A42*TY_B21*TY_B34 - TY_A41*TY_B22*TY_B34 |
---|
953 | TY_F36 = 2*TY_A52*TY_B22*TY_B24 + 2*TY_A52*TY_B21*TY_B25 - TY_A43*TY_B23*TY_B32 - TY_A42*TY_B24*TY_B32 - TY_A41*TY_B25*TY_B32 - TY_A43*TY_B21*TY_B34 - TY_A42*TY_B22*TY_B34 - TY_A41*TY_B23*TY_B34 + TY_A52*pow(TY_B23,2) |
---|
954 | TY_F37 = 2*TY_A52*TY_B23*TY_B24 + 2*TY_A52*TY_B22*TY_B25 - TY_A43*TY_B24*TY_B32 - TY_A42*TY_B25*TY_B32 - TY_A43*TY_B22*TY_B34 - TY_A42*TY_B23*TY_B34 - TY_A41*TY_B24*TY_B34 |
---|
955 | TY_F38 = 2*TY_A52*TY_B23*TY_B25 - TY_A43*TY_B25*TY_B32 - TY_A43*TY_B23*TY_B34 - TY_A42*TY_B24*TY_B34 - TY_A41*TY_B25*TY_B34 + TY_A52*pow(TY_B24,2) |
---|
956 | TY_F39 = 2*TY_A52*TY_B24*TY_B25 - TY_A43*TY_B24*TY_B34 - TY_A42*TY_B25*TY_B34 |
---|
957 | TY_F310 = -(TY_A43*TY_B25*TY_B34) + TY_A52*pow(TY_B25,2) |
---|
958 | |
---|
959 | if( prnt ) |
---|
960 | printf "\rF = \r" |
---|
961 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., 0., 0., TY_F14, 0., TY_F16, 0., TY_F18, 0., 0. |
---|
962 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., 0., TY_F23, TY_F24, TY_F25, TY_F26, TY_F27, TY_F28, TY_F29, 0. |
---|
963 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., TY_F32, TY_F33, TY_F34, TY_F35, TY_F36, TY_F37, TY_F38, TY_F39, TY_F310 |
---|
964 | printf "TY_F14 = %15.12g\r",TY_F14 |
---|
965 | printf "TY_F16 = %15.12g\r",TY_F16 |
---|
966 | printf "TY_F18 = %15.12g\r",TY_F18 |
---|
967 | printf "TY_F23 = %15.12g\r",TY_F23 |
---|
968 | printf "TY_F24 = %15.12g\r",TY_F24 |
---|
969 | printf "TY_F25 = %15.12g\r",TY_F25 |
---|
970 | printf "TY_F26 = %15.12g\r",TY_F26 |
---|
971 | printf "TY_F27 = %15.12g\r",TY_F27 |
---|
972 | printf "TY_F28 = %15.12g\r",TY_F28 |
---|
973 | printf "TY_F29 = %15.12g\r",TY_F29 |
---|
974 | printf "TY_F32 = %15.12g\r",TY_F32 |
---|
975 | printf "TY_F33 = %15.12g\r",TY_F33 |
---|
976 | printf "TY_F34 = %15.12g\r",TY_F34 |
---|
977 | printf "TY_F35 = %15.12g\r",TY_F35 |
---|
978 | printf "TY_F36 = %15.12g\r",TY_F36 |
---|
979 | printf "TY_F37 = %15.12g\r",TY_F37 |
---|
980 | printf "TY_F38 = %15.12g\r",TY_F38 |
---|
981 | printf "TY_F39 = %15.12g\r",TY_F39 |
---|
982 | printf "TY_F310 = %15.12g\r",TY_F310 |
---|
983 | endif |
---|
984 | |
---|
985 | NVAR TY_G13 = root:yuk:TY_G13 |
---|
986 | NVAR TY_G14 = root:yuk:TY_G14 |
---|
987 | NVAR TY_G15 = root:yuk:TY_G15 |
---|
988 | NVAR TY_G16 = root:yuk:TY_G16 |
---|
989 | NVAR TY_G17 = root:yuk:TY_G17 |
---|
990 | NVAR TY_G18 = root:yuk:TY_G18 |
---|
991 | NVAR TY_G19 = root:yuk:TY_G19 |
---|
992 | NVAR TY_G110 = root:yuk:TY_G110 |
---|
993 | NVAR TY_G111 = root:yuk:TY_G111 |
---|
994 | NVAR TY_G112 = root:yuk:TY_G112 |
---|
995 | NVAR TY_G113 = root:yuk:TY_G113 |
---|
996 | NVAR TY_G22 = root:yuk:TY_G22 |
---|
997 | NVAR TY_G23 = root:yuk:TY_G23 |
---|
998 | NVAR TY_G24 = root:yuk:TY_G24 |
---|
999 | NVAR TY_G25 = root:yuk:TY_G25 |
---|
1000 | NVAR TY_G26 = root:yuk:TY_G26 |
---|
1001 | NVAR TY_G27 = root:yuk:TY_G27 |
---|
1002 | NVAR TY_G28 = root:yuk:TY_G28 |
---|
1003 | NVAR TY_G29 = root:yuk:TY_G29 |
---|
1004 | NVAR TY_G210 = root:yuk:TY_G210 |
---|
1005 | NVAR TY_G211 = root:yuk:TY_G211 |
---|
1006 | NVAR TY_G212 = root:yuk:TY_G212 |
---|
1007 | NVAR TY_G213 = root:yuk:TY_G213 |
---|
1008 | NVAR TY_G214 = root:yuk:TY_G214 |
---|
1009 | |
---|
1010 | |
---|
1011 | TY_G13 = -(TY_B12*TY_F32) |
---|
1012 | TY_G14 = -(TY_B12*TY_F33) |
---|
1013 | TY_G15 = TY_B32*TY_F14 - TY_B14*TY_F32 - TY_B12*TY_F34 |
---|
1014 | TY_G16 = -(TY_B14*TY_F33) - TY_B12*TY_F35 |
---|
1015 | TY_G17 = TY_B34*TY_F14 + TY_B32*TY_F16 - TY_B14*TY_F34 - TY_B12*TY_F36 |
---|
1016 | TY_G18 = -(TY_B14*TY_F35) - TY_B12*TY_F37 |
---|
1017 | TY_G19 = TY_B34*TY_F16 + TY_B32*TY_F18 - TY_B14*TY_F36 - TY_B12*TY_F38 |
---|
1018 | TY_G110 = -(TY_B14*TY_F37) - TY_B12*TY_F39 |
---|
1019 | TY_G111 = TY_B34*TY_F18 - TY_B12*TY_F310 - TY_B14*TY_F38 |
---|
1020 | TY_G112 = -(TY_B14*TY_F39) |
---|
1021 | TY_G113 = -(TY_B14*TY_F310) |
---|
1022 | TY_G22 = -(TY_B21*TY_F32) |
---|
1023 | TY_G23 = -(TY_B22*TY_F32) - TY_B21*TY_F33 |
---|
1024 | TY_G24 = TY_B32*TY_F23 - TY_B23*TY_F32 - TY_B22*TY_F33 - TY_B21*TY_F34 |
---|
1025 | TY_G25 = TY_B32*TY_F24 - TY_B24*TY_F32 - TY_B23*TY_F33 - TY_B22*TY_F34 - TY_B21*TY_F35 |
---|
1026 | TY_G26 = TY_B34*TY_F23 + TY_B32*TY_F25 - TY_B25*TY_F32 - TY_B24*TY_F33 - TY_B23*TY_F34 - TY_B22*TY_F35 - TY_B21*TY_F36 |
---|
1027 | TY_G27 = TY_B34*TY_F24 + TY_B32*TY_F26 - TY_B25*TY_F33 - TY_B24*TY_F34 - TY_B23*TY_F35 - TY_B22*TY_F36 - TY_B21*TY_F37 |
---|
1028 | TY_G28 = TY_B34*TY_F25 + TY_B32*TY_F27 - TY_B25*TY_F34 - TY_B24*TY_F35 - TY_B23*TY_F36 - TY_B22*TY_F37 - TY_B21*TY_F38 |
---|
1029 | TY_G29 = TY_B34*TY_F26 + TY_B32*TY_F28 - TY_B25*TY_F35 - TY_B24*TY_F36 - TY_B23*TY_F37 - TY_B22*TY_F38 - TY_B21*TY_F39 |
---|
1030 | TY_G210 = TY_B34*TY_F27 + TY_B32*TY_F29 - TY_B21*TY_F310 - TY_B25*TY_F36 - TY_B24*TY_F37 - TY_B23*TY_F38 - TY_B22*TY_F39 |
---|
1031 | TY_G211 = TY_B34*TY_F28 - TY_B22*TY_F310 - TY_B25*TY_F37 - TY_B24*TY_F38 - TY_B23*TY_F39 |
---|
1032 | TY_G212 = TY_B34*TY_F29 - TY_B23*TY_F310 - TY_B25*TY_F38 - TY_B24*TY_F39 |
---|
1033 | TY_G213 = -(TY_B24*TY_F310) - TY_B25*TY_F39 |
---|
1034 | TY_G214 = -(TY_B25*TY_F310) |
---|
1035 | |
---|
1036 | if( prnt ) |
---|
1037 | printf "\rG = \r" |
---|
1038 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., 0., TY_G13, TY_G14, TY_G15, TY_G16, TY_G17, TY_G18, TY_G19, TY_G110, TY_G111, TY_G112, TY_G113, 0. |
---|
1039 | // printf "%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\t\t%f\r", 0., TY_G22, TY_G23, TY_G24, TY_G25, TY_G26, TY_G27, TY_G28, TY_G29, TY_G210, TY_G211, TY_G212, TY_G213, TY_G214 |
---|
1040 | printf "TY_G13 = %15.12g\r",TY_G13 |
---|
1041 | printf "TY_G14 = %15.12g\r",TY_G14 |
---|
1042 | printf "TY_G15 = %15.12g\r",TY_G15 |
---|
1043 | printf "TY_G16 = %15.12g\r",TY_G16 |
---|
1044 | printf "TY_G17 = %15.12g\r",TY_G17 |
---|
1045 | printf "TY_G18 = %15.12g\r",TY_G18 |
---|
1046 | printf "TY_G19 = %15.12g\r",TY_G19 |
---|
1047 | printf "TY_G110 = %15.12g\r",TY_G110 |
---|
1048 | printf "TY_G111 = %15.12g\r",TY_G111 |
---|
1049 | printf "TY_G112 = %15.12g\r",TY_G112 |
---|
1050 | printf "TY_G113 = %15.12g\r",TY_G113 |
---|
1051 | printf "TY_G22 = %15.12g\r",TY_G22 |
---|
1052 | printf "TY_G23 = %15.12g\r",TY_G23 |
---|
1053 | printf "TY_G24 = %15.12g\r",TY_G24 |
---|
1054 | printf "TY_G25 = %15.12g\r",TY_G25 |
---|
1055 | printf "TY_G26 = %15.12g\r",TY_G26 |
---|
1056 | printf "TY_G27 = %15.12g\r",TY_G27 |
---|
1057 | printf "TY_G28 = %15.12g\r",TY_G28 |
---|
1058 | printf "TY_G29 = %15.12g\r",TY_G29 |
---|
1059 | printf "TY_G210 = %15.12g\r",TY_G210 |
---|
1060 | printf "TY_G211 = %15.12g\r",TY_G211 |
---|
1061 | printf "TY_G212 = %15.12g\r",TY_G212 |
---|
1062 | printf "TY_G213 = %15.12g\r",TY_G213 |
---|
1063 | printf "TY_G214 = %15.12g\r",TY_G214 |
---|
1064 | endif |
---|
1065 | |
---|
1066 | Make/O/D/N=23 TY_w |
---|
1067 | |
---|
1068 | // coefficients for polynomial |
---|
1069 | TY_w[0] = (-(TY_A21*TY_B12) + TY_A12*TY_B21)*(TY_A52*TY_B21 - TY_A41*TY_B32)*pow(TY_B21,2)*pow(TY_B32,3) |
---|
1070 | |
---|
1071 | TY_w[1] = 2*TY_B32*TY_G13*TY_G14 - TY_B24*TY_G13*TY_G22 - TY_B23*TY_G14*TY_G22 - TY_B22*TY_G15*TY_G22 - TY_B21*TY_G16*TY_G22 - TY_B23*TY_G13*TY_G23 - TY_B22*TY_G14*TY_G23 |
---|
1072 | TY_w[1] += - TY_B21*TY_G15*TY_G23 + 2*TY_B14*TY_G22*TY_G23 - TY_B22*TY_G13*TY_G24 - TY_B21*TY_G14*TY_G24 + 2*TY_B12*TY_G23*TY_G24 - TY_B21*TY_G13*TY_G25 + 2*TY_B12*TY_G22*TY_G25 |
---|
1073 | |
---|
1074 | TY_w[2] = -(TY_B25*TY_G13*TY_G22) - TY_B24*TY_G14*TY_G22 - TY_B23*TY_G15*TY_G22 - TY_B22*TY_G16*TY_G22 - TY_B21*TY_G17*TY_G22 - TY_B24*TY_G13*TY_G23 - TY_B23*TY_G14*TY_G23 - TY_B22*TY_G15*TY_G23 - TY_B21*TY_G16*TY_G23 |
---|
1075 | TY_w[2] += -TY_B23*TY_G13*TY_G24 - TY_B22*TY_G14*TY_G24 - TY_B21*TY_G15*TY_G24 + 2*TY_B14*TY_G22*TY_G24 - TY_B22*TY_G13*TY_G25 - TY_B21*TY_G14*TY_G25 + 2*TY_B12*TY_G23*TY_G25 - TY_B21*TY_G13*TY_G26 + 2*TY_B12*TY_G22*TY_G26 |
---|
1076 | TY_w[2] += +TY_B34*pow(TY_G13,2) + TY_B32*(2*TY_G13*TY_G15 + pow(TY_G14,2)) + TY_B14*pow(TY_G23,2) + TY_B12*pow(TY_G24,2) |
---|
1077 | |
---|
1078 | TY_w[3] = 2*TY_B34*TY_G13*TY_G14 + 2*TY_B32*(TY_G14*TY_G15 + TY_G13*TY_G16) - TY_B25*TY_G14*TY_G22 - TY_B24*TY_G15*TY_G22 - TY_B23*TY_G16*TY_G22 - TY_B22*TY_G17*TY_G22 - TY_B21*TY_G18*TY_G22 - TY_B25*TY_G13*TY_G23 |
---|
1079 | TY_w[3] += -TY_B24*TY_G14*TY_G23 - TY_B23*TY_G15*TY_G23 - TY_B22*TY_G16*TY_G23 - TY_B21*TY_G17*TY_G23 - TY_B24*TY_G13*TY_G24 - TY_B23*TY_G14*TY_G24 - TY_B22*TY_G15*TY_G24 - TY_B21*TY_G16*TY_G24 + 2*TY_B14*TY_G23*TY_G24 |
---|
1080 | TY_w[3] += -TY_B23*TY_G13*TY_G25 - TY_B22*TY_G14*TY_G25 - TY_B21*TY_G15*TY_G25 + 2*TY_B14*TY_G22*TY_G25 + 2*TY_B12*TY_G24*TY_G25 - TY_B22*TY_G13*TY_G26 - TY_B21*TY_G14*TY_G26 + 2*TY_B12*TY_G23*TY_G26 - TY_B21*TY_G13*TY_G27 |
---|
1081 | TY_w[3] += 2*TY_B12*TY_G22*TY_G27; |
---|
1082 | |
---|
1083 | TY_w[4] = -(TY_B25*TY_G15*TY_G22) - TY_B24*TY_G16*TY_G22 - TY_B23*TY_G17*TY_G22 - TY_B22*TY_G18*TY_G22 - TY_B21*TY_G19*TY_G22 - TY_B25*TY_G14*TY_G23 - TY_B24*TY_G15*TY_G23 - TY_B23*TY_G16*TY_G23 - TY_B22*TY_G17*TY_G23 |
---|
1084 | TY_w[4] += -TY_B21*TY_G18*TY_G23 - TY_B25*TY_G13*TY_G24 - TY_B24*TY_G14*TY_G24 - TY_B23*TY_G15*TY_G24 - TY_B22*TY_G16*TY_G24 - TY_B21*TY_G17*TY_G24 - TY_B24*TY_G13*TY_G25 - TY_B23*TY_G14*TY_G25 - TY_B22*TY_G15*TY_G25 |
---|
1085 | TY_w[4] += -TY_B21*TY_G16*TY_G25 + 2*TY_B14*TY_G23*TY_G25 - TY_B23*TY_G13*TY_G26 - TY_B22*TY_G14*TY_G26 - TY_B21*TY_G15*TY_G26 + 2*TY_B14*TY_G22*TY_G26 + 2*TY_B12*TY_G24*TY_G26 - TY_B22*TY_G13*TY_G27 - TY_B21*TY_G14*TY_G27 |
---|
1086 | TY_w[4] += 2*TY_B12*TY_G23*TY_G27 - TY_B21*TY_G13*TY_G28 + 2*TY_B12*TY_G22*TY_G28 + TY_B34*(2*TY_G13*TY_G15 + pow(TY_G14,2)) + TY_B32*(2*TY_G14*TY_G16 + 2*TY_G13*TY_G17 + pow(TY_G15,2)) + TY_B14*pow(TY_G24,2) |
---|
1087 | TY_w[4] += TY_B12*pow(TY_G25,2) |
---|
1088 | |
---|
1089 | TY_w[5] = 2*TY_B34*(TY_G14*TY_G15 + TY_G13*TY_G16) + 2*TY_B32*(TY_G15*TY_G16 + TY_G14*TY_G17 + TY_G13*TY_G18) - TY_B21*TY_G110*TY_G22 - TY_B25*TY_G16*TY_G22 - TY_B24*TY_G17*TY_G22 - TY_B23*TY_G18*TY_G22 - TY_B22*TY_G19*TY_G22 |
---|
1090 | TY_w[5] += -TY_B25*TY_G15*TY_G23 - TY_B24*TY_G16*TY_G23 - TY_B23*TY_G17*TY_G23 - TY_B22*TY_G18*TY_G23 - TY_B21*TY_G19*TY_G23 - TY_B25*TY_G14*TY_G24 - TY_B24*TY_G15*TY_G24 - TY_B23*TY_G16*TY_G24 - TY_B22*TY_G17*TY_G24 |
---|
1091 | TY_w[5] += -TY_B21*TY_G18*TY_G24 - TY_B25*TY_G13*TY_G25 - TY_B24*TY_G14*TY_G25 - TY_B23*TY_G15*TY_G25 - TY_B22*TY_G16*TY_G25 - TY_B21*TY_G17*TY_G25 + 2*TY_B14*TY_G24*TY_G25 - TY_B24*TY_G13*TY_G26 - TY_B23*TY_G14*TY_G26 |
---|
1092 | TY_w[5] += -TY_B22*TY_G15*TY_G26 - TY_B21*TY_G16*TY_G26 + 2*TY_B14*TY_G23*TY_G26 + 2*TY_B12*TY_G25*TY_G26 - TY_B23*TY_G13*TY_G27 - TY_B22*TY_G14*TY_G27 - TY_B21*TY_G15*TY_G27 + 2*TY_B14*TY_G22*TY_G27 + 2*TY_B12*TY_G24*TY_G27 |
---|
1093 | TY_w[5] += -TY_B22*TY_G13*TY_G28 - TY_B21*TY_G14*TY_G28 + 2*TY_B12*TY_G23*TY_G28 - TY_B21*TY_G13*TY_G29 + 2*TY_B12*TY_G22*TY_G29 |
---|
1094 | |
---|
1095 | TY_w[6] = -(TY_B22*TY_G110*TY_G22) - TY_B21*TY_G111*TY_G22 - TY_B25*TY_G17*TY_G22 - TY_B24*TY_G18*TY_G22 - TY_B23*TY_G19*TY_G22 + TY_G210*(-(TY_B21*TY_G13) + 2*TY_B12*TY_G22) - TY_B21*TY_G110*TY_G23 - TY_B25*TY_G16*TY_G23 |
---|
1096 | TY_w[6] += -TY_B24*TY_G17*TY_G23 - TY_B23*TY_G18*TY_G23 - TY_B22*TY_G19*TY_G23 - TY_B25*TY_G15*TY_G24 - TY_B24*TY_G16*TY_G24 - TY_B23*TY_G17*TY_G24 - TY_B22*TY_G18*TY_G24 - TY_B21*TY_G19*TY_G24 - TY_B25*TY_G14*TY_G25 |
---|
1097 | TY_w[6] += -TY_B24*TY_G15*TY_G25 - TY_B23*TY_G16*TY_G25 - TY_B22*TY_G17*TY_G25 - TY_B21*TY_G18*TY_G25 - TY_B25*TY_G13*TY_G26 - TY_B24*TY_G14*TY_G26 - TY_B23*TY_G15*TY_G26 - TY_B22*TY_G16*TY_G26 - TY_B21*TY_G17*TY_G26 |
---|
1098 | TY_w[6] += 2*TY_B14*TY_G24*TY_G26 - TY_B24*TY_G13*TY_G27 - TY_B23*TY_G14*TY_G27 - TY_B22*TY_G15*TY_G27 - TY_B21*TY_G16*TY_G27 + 2*TY_B14*TY_G23*TY_G27 + 2*TY_B12*TY_G25*TY_G27 - TY_B23*TY_G13*TY_G28 - TY_B22*TY_G14*TY_G28 |
---|
1099 | TY_w[6] += -TY_B21*TY_G15*TY_G28 + 2*TY_B14*TY_G22*TY_G28 + 2*TY_B12*TY_G24*TY_G28 - TY_B22*TY_G13*TY_G29 - TY_B21*TY_G14*TY_G29 + 2*TY_B12*TY_G23*TY_G29 + TY_B34*(2*TY_G14*TY_G16 + 2*TY_G13*TY_G17 + pow(TY_G15,2)) |
---|
1100 | TY_w[6] += TY_B32*(2*(TY_G15*TY_G17 + TY_G14*TY_G18 + TY_G13*TY_G19) + pow(TY_G16,2)) + TY_B14*pow(TY_G25,2) + TY_B12*pow(TY_G26,2) |
---|
1101 | |
---|
1102 | TY_w[7] = 2*TY_B34*(TY_G15*TY_G16 + TY_G14*TY_G17 + TY_G13*TY_G18) + 2*TY_B32*(TY_G110*TY_G13 + TY_G16*TY_G17 + TY_G15*TY_G18 + TY_G14*TY_G19) - TY_B22*TY_G13*TY_G210 - TY_B21*TY_G14*TY_G210 - TY_B23*TY_G110*TY_G22 |
---|
1103 | TY_w[7] += -TY_B22*TY_G111*TY_G22 - TY_B21*TY_G112*TY_G22 - TY_B25*TY_G18*TY_G22 - TY_B24*TY_G19*TY_G22 + TY_G211*(-(TY_B21*TY_G13) + 2*TY_B12*TY_G22) - TY_B22*TY_G110*TY_G23 - TY_B21*TY_G111*TY_G23 - TY_B25*TY_G17*TY_G23 |
---|
1104 | TY_w[7] += -TY_B24*TY_G18*TY_G23 - TY_B23*TY_G19*TY_G23 + 2*TY_B12*TY_G210*TY_G23 - TY_B21*TY_G110*TY_G24 - TY_B25*TY_G16*TY_G24 - TY_B24*TY_G17*TY_G24 - TY_B23*TY_G18*TY_G24 - TY_B22*TY_G19*TY_G24 - TY_B25*TY_G15*TY_G25 |
---|
1105 | TY_w[7] += -TY_B24*TY_G16*TY_G25 - TY_B23*TY_G17*TY_G25 - TY_B22*TY_G18*TY_G25 - TY_B21*TY_G19*TY_G25 - TY_B25*TY_G14*TY_G26 - TY_B24*TY_G15*TY_G26 - TY_B23*TY_G16*TY_G26 - TY_B22*TY_G17*TY_G26 - TY_B21*TY_G18*TY_G26 |
---|
1106 | TY_w[7] += 2*TY_B14*TY_G25*TY_G26 - TY_B25*TY_G13*TY_G27 - TY_B24*TY_G14*TY_G27 - TY_B23*TY_G15*TY_G27 - TY_B22*TY_G16*TY_G27 - TY_B21*TY_G17*TY_G27 + 2*TY_B14*TY_G24*TY_G27 + 2*TY_B12*TY_G26*TY_G27 - TY_B24*TY_G13*TY_G28 |
---|
1107 | TY_w[7] += -TY_B23*TY_G14*TY_G28 - TY_B22*TY_G15*TY_G28 - TY_B21*TY_G16*TY_G28 + 2*TY_B14*TY_G23*TY_G28 + 2*TY_B12*TY_G25*TY_G28 - TY_B23*TY_G13*TY_G29 - TY_B22*TY_G14*TY_G29 - TY_B21*TY_G15*TY_G29 + 2*TY_B14*TY_G22*TY_G29 |
---|
1108 | TY_w[7] += 2*TY_B12*TY_G24*TY_G29 |
---|
1109 | |
---|
1110 | TY_w[8] = -(TY_B23*TY_G13*TY_G210) - TY_B22*TY_G14*TY_G210 - TY_B21*TY_G15*TY_G210 - TY_B22*TY_G13*TY_G211 - TY_B21*TY_G14*TY_G211 - TY_B21*TY_G13*TY_G212 - TY_B24*TY_G110*TY_G22 - TY_B23*TY_G111*TY_G22 - TY_B22*TY_G112*TY_G22 |
---|
1111 | TY_w[8] += -TY_B21*TY_G113*TY_G22 - TY_B25*TY_G19*TY_G22 + 2*TY_B14*TY_G210*TY_G22 + 2*TY_B12*TY_G212*TY_G22 - TY_B23*TY_G110*TY_G23 - TY_B22*TY_G111*TY_G23 - TY_B21*TY_G112*TY_G23 - TY_B25*TY_G18*TY_G23 - TY_B24*TY_G19*TY_G23 |
---|
1112 | TY_w[8] += 2*TY_B12*TY_G211*TY_G23 - TY_B22*TY_G110*TY_G24 - TY_B21*TY_G111*TY_G24 - TY_B25*TY_G17*TY_G24 - TY_B24*TY_G18*TY_G24 - TY_B23*TY_G19*TY_G24 + 2*TY_B12*TY_G210*TY_G24 - TY_B21*TY_G110*TY_G25 - TY_B25*TY_G16*TY_G25 |
---|
1113 | TY_w[8] += -TY_B24*TY_G17*TY_G25 - TY_B23*TY_G18*TY_G25 - TY_B22*TY_G19*TY_G25 - TY_B25*TY_G15*TY_G26 - TY_B24*TY_G16*TY_G26 - TY_B23*TY_G17*TY_G26 - TY_B22*TY_G18*TY_G26 - TY_B21*TY_G19*TY_G26 - TY_B25*TY_G14*TY_G27 |
---|
1114 | TY_w[8] += -TY_B24*TY_G15*TY_G27 - TY_B23*TY_G16*TY_G27 - TY_B22*TY_G17*TY_G27 - TY_B21*TY_G18*TY_G27 + 2*TY_B14*TY_G25*TY_G27 - TY_B25*TY_G13*TY_G28 - TY_B24*TY_G14*TY_G28 - TY_B23*TY_G15*TY_G28 - TY_B22*TY_G16*TY_G28 |
---|
1115 | TY_w[8] += -TY_B21*TY_G17*TY_G28 + 2*TY_B14*TY_G24*TY_G28 + 2*TY_B12*TY_G26*TY_G28 - TY_B24*TY_G13*TY_G29 - TY_B23*TY_G14*TY_G29 - TY_B22*TY_G15*TY_G29 - TY_B21*TY_G16*TY_G29 + 2*TY_B14*TY_G23*TY_G29 + 2*TY_B12*TY_G25*TY_G29 |
---|
1116 | TY_w[8] += TY_B34*(2*(TY_G15*TY_G17 + TY_G14*TY_G18 + TY_G13*TY_G19) + pow(TY_G16,2)) + TY_B32*(2*(TY_G111*TY_G13 + TY_G110*TY_G14 + TY_G16*TY_G18 + TY_G15*TY_G19) + pow(TY_G17,2)) + TY_B14*pow(TY_G26,2) |
---|
1117 | TY_w[8] += TY_B12*pow(TY_G27,2) |
---|
1118 | |
---|
1119 | TY_w[9] = 2*TY_B34*(TY_G110*TY_G13 + TY_G16*TY_G17 + TY_G15*TY_G18 + TY_G14*TY_G19) + 2*TY_B32*(TY_G112*TY_G13 + TY_G111*TY_G14 + TY_G110*TY_G15 + TY_G17*TY_G18 + TY_G16*TY_G19) - TY_B24*TY_G13*TY_G210 - TY_B23*TY_G14*TY_G210 |
---|
1120 | TY_w[9] += -TY_B22*TY_G15*TY_G210 - TY_B21*TY_G16*TY_G210 - TY_B23*TY_G13*TY_G211 - TY_B22*TY_G14*TY_G211 - TY_B21*TY_G15*TY_G211 - TY_B22*TY_G13*TY_G212 - TY_B21*TY_G14*TY_G212 - TY_B25*TY_G110*TY_G22 - TY_B24*TY_G111*TY_G22 |
---|
1121 | TY_w[9] += -TY_B23*TY_G112*TY_G22 - TY_B22*TY_G113*TY_G22 + 2*TY_B14*TY_G211*TY_G22 + TY_G213*(-(TY_B21*TY_G13) + 2*TY_B12*TY_G22) - TY_B24*TY_G110*TY_G23 - TY_B23*TY_G111*TY_G23 - TY_B22*TY_G112*TY_G23 |
---|
1122 | TY_w[9] += -TY_B21*TY_G113*TY_G23 - TY_B25*TY_G19*TY_G23 + 2*TY_B14*TY_G210*TY_G23 + 2*TY_B12*TY_G212*TY_G23 - TY_B23*TY_G110*TY_G24 - TY_B22*TY_G111*TY_G24 - TY_B21*TY_G112*TY_G24 - TY_B25*TY_G18*TY_G24 - TY_B24*TY_G19*TY_G24 |
---|
1123 | TY_w[9] += 2*TY_B12*TY_G211*TY_G24 - TY_B22*TY_G110*TY_G25 - TY_B21*TY_G111*TY_G25 - TY_B25*TY_G17*TY_G25 - TY_B24*TY_G18*TY_G25 - TY_B23*TY_G19*TY_G25 + 2*TY_B12*TY_G210*TY_G25 - TY_B21*TY_G110*TY_G26 - TY_B25*TY_G16*TY_G26 |
---|
1124 | TY_w[9] += -TY_B24*TY_G17*TY_G26 - TY_B23*TY_G18*TY_G26 - TY_B22*TY_G19*TY_G26 - TY_B25*TY_G15*TY_G27 - TY_B24*TY_G16*TY_G27 - TY_B23*TY_G17*TY_G27 - TY_B22*TY_G18*TY_G27 - TY_B21*TY_G19*TY_G27 + 2*TY_B14*TY_G26*TY_G27 |
---|
1125 | TY_w[9] += -TY_B25*TY_G14*TY_G28 - TY_B24*TY_G15*TY_G28 - TY_B23*TY_G16*TY_G28 - TY_B22*TY_G17*TY_G28 - TY_B21*TY_G18*TY_G28 + 2*TY_B14*TY_G25*TY_G28 + 2*TY_B12*TY_G27*TY_G28 - TY_B25*TY_G13*TY_G29 - TY_B24*TY_G14*TY_G29 |
---|
1126 | TY_w[9] += -TY_B23*TY_G15*TY_G29 - TY_B22*TY_G16*TY_G29 - TY_B21*TY_G17*TY_G29 + 2*TY_B14*TY_G24*TY_G29 + 2*TY_B12*TY_G26*TY_G29 |
---|
1127 | |
---|
1128 | TY_w[10] = -(TY_B25*TY_G13*TY_G210) - TY_B24*TY_G14*TY_G210 - TY_B23*TY_G15*TY_G210 - TY_B22*TY_G16*TY_G210 - TY_B21*TY_G17*TY_G210 - TY_B24*TY_G13*TY_G211 - TY_B23*TY_G14*TY_G211 - TY_B22*TY_G15*TY_G211 - TY_B21*TY_G16*TY_G211 |
---|
1129 | TY_w[10] += -TY_B23*TY_G13*TY_G212 - TY_B22*TY_G14*TY_G212 - TY_B21*TY_G15*TY_G212 - TY_B22*TY_G13*TY_G213 - TY_B21*TY_G14*TY_G213 - TY_B21*TY_G13*TY_G214 - TY_B25*TY_G111*TY_G22 - TY_B24*TY_G112*TY_G22 - TY_B23*TY_G113*TY_G22 |
---|
1130 | TY_w[10] += 2*TY_B14*TY_G212*TY_G22 + 2*TY_B12*TY_G214*TY_G22 - TY_B25*TY_G110*TY_G23 - TY_B24*TY_G111*TY_G23 - TY_B23*TY_G112*TY_G23 - TY_B22*TY_G113*TY_G23 + 2*TY_B14*TY_G211*TY_G23 + 2*TY_B12*TY_G213*TY_G23 |
---|
1131 | TY_w[10] += -TY_B24*TY_G110*TY_G24 - TY_B23*TY_G111*TY_G24 - TY_B22*TY_G112*TY_G24 - TY_B21*TY_G113*TY_G24 - TY_B25*TY_G19*TY_G24 + 2*TY_B14*TY_G210*TY_G24 + 2*TY_B12*TY_G212*TY_G24 - TY_B23*TY_G110*TY_G25 |
---|
1132 | TY_w[10] += -TY_B22*TY_G111*TY_G25 - TY_B21*TY_G112*TY_G25 - TY_B25*TY_G18*TY_G25 - TY_B24*TY_G19*TY_G25 + 2*TY_B12*TY_G211*TY_G25 - TY_B22*TY_G110*TY_G26 - TY_B21*TY_G111*TY_G26 - TY_B25*TY_G17*TY_G26 - TY_B24*TY_G18*TY_G26 |
---|
1133 | TY_w[10] += -TY_B23*TY_G19*TY_G26 + 2*TY_B12*TY_G210*TY_G26 - TY_B21*TY_G110*TY_G27 - TY_B25*TY_G16*TY_G27 - TY_B24*TY_G17*TY_G27 - TY_B23*TY_G18*TY_G27 - TY_B22*TY_G19*TY_G27 - TY_B25*TY_G15*TY_G28 - TY_B24*TY_G16*TY_G28 |
---|
1134 | TY_w[10] += -TY_B23*TY_G17*TY_G28 - TY_B22*TY_G18*TY_G28 - TY_B21*TY_G19*TY_G28 + 2*TY_B14*TY_G26*TY_G28 - TY_B25*TY_G14*TY_G29 - TY_B24*TY_G15*TY_G29 - TY_B23*TY_G16*TY_G29 - TY_B22*TY_G17*TY_G29 - TY_B21*TY_G18*TY_G29 |
---|
1135 | TY_w[10] += 2*TY_B14*TY_G25*TY_G29 + 2*TY_B12*TY_G27*TY_G29 + TY_B34*(2*(TY_G111*TY_G13 + TY_G110*TY_G14 + TY_G16*TY_G18 + TY_G15*TY_G19) + pow(TY_G17,2)) |
---|
1136 | TY_w[10] += TY_B32*(2*(TY_G113*TY_G13 + TY_G112*TY_G14 + TY_G111*TY_G15 + TY_G110*TY_G16 + TY_G17*TY_G19) + pow(TY_G18,2)) + TY_B14*pow(TY_G27,2) + TY_B12*pow(TY_G28,2) |
---|
1137 | |
---|
1138 | TY_w[11] = 2*TY_B34*(TY_G112*TY_G13 + TY_G111*TY_G14 + TY_G110*TY_G15 + TY_G17*TY_G18 + TY_G16*TY_G19) + 2*TY_B32*(TY_G113*TY_G14 + TY_G112*TY_G15 + TY_G111*TY_G16 + TY_G110*TY_G17 + TY_G18*TY_G19) - TY_B25*TY_G14*TY_G210 |
---|
1139 | TY_w[11] += -TY_B24*TY_G15*TY_G210 - TY_B23*TY_G16*TY_G210 - TY_B22*TY_G17*TY_G210 - TY_B21*TY_G18*TY_G210 - TY_B25*TY_G13*TY_G211 - TY_B24*TY_G14*TY_G211 - TY_B23*TY_G15*TY_G211 - TY_B22*TY_G16*TY_G211 - TY_B21*TY_G17*TY_G211 |
---|
1140 | TY_w[11] += -TY_B24*TY_G13*TY_G212 - TY_B23*TY_G14*TY_G212 - TY_B22*TY_G15*TY_G212 - TY_B21*TY_G16*TY_G212 - TY_B23*TY_G13*TY_G213 - TY_B22*TY_G14*TY_G213 - TY_B21*TY_G15*TY_G213 - TY_B25*TY_G112*TY_G22 - TY_B24*TY_G113*TY_G22 |
---|
1141 | TY_w[11] += 2*TY_B14*TY_G213*TY_G22 - TY_B25*TY_G111*TY_G23 - TY_B24*TY_G112*TY_G23 - TY_B23*TY_G113*TY_G23 + 2*TY_B14*TY_G212*TY_G23 - TY_G214*(TY_B22*TY_G13 + TY_B21*TY_G14 - 2*TY_B12*TY_G23) - TY_B25*TY_G110*TY_G24 |
---|
1142 | TY_w[11] += -TY_B24*TY_G111*TY_G24 - TY_B23*TY_G112*TY_G24 - TY_B22*TY_G113*TY_G24 + 2*TY_B14*TY_G211*TY_G24 + 2*TY_B12*TY_G213*TY_G24 - TY_B24*TY_G110*TY_G25 - TY_B23*TY_G111*TY_G25 - TY_B22*TY_G112*TY_G25 |
---|
1143 | TY_w[11] += -TY_B21*TY_G113*TY_G25 - TY_B25*TY_G19*TY_G25 + 2*TY_B14*TY_G210*TY_G25 + 2*TY_B12*TY_G212*TY_G25 - TY_B23*TY_G110*TY_G26 - TY_B22*TY_G111*TY_G26 - TY_B21*TY_G112*TY_G26 - TY_B25*TY_G18*TY_G26 - TY_B24*TY_G19*TY_G26 |
---|
1144 | TY_w[11] += 2*TY_B12*TY_G211*TY_G26 - TY_B22*TY_G110*TY_G27 - TY_B21*TY_G111*TY_G27 - TY_B25*TY_G17*TY_G27 - TY_B24*TY_G18*TY_G27 - TY_B23*TY_G19*TY_G27 + 2*TY_B12*TY_G210*TY_G27 - TY_B21*TY_G110*TY_G28 - TY_B25*TY_G16*TY_G28 |
---|
1145 | TY_w[11] += -TY_B24*TY_G17*TY_G28 - TY_B23*TY_G18*TY_G28 - TY_B22*TY_G19*TY_G28 + 2*TY_B14*TY_G27*TY_G28 - TY_B25*TY_G15*TY_G29 - TY_B24*TY_G16*TY_G29 - TY_B23*TY_G17*TY_G29 - TY_B22*TY_G18*TY_G29 - TY_B21*TY_G19*TY_G29 |
---|
1146 | TY_w[11] += 2*TY_B14*TY_G26*TY_G29 + 2*TY_B12*TY_G28*TY_G29 |
---|
1147 | |
---|
1148 | TY_w[12] = -(TY_B25*TY_G15*TY_G210) - TY_B24*TY_G16*TY_G210 - TY_B23*TY_G17*TY_G210 - TY_B22*TY_G18*TY_G210 - TY_B21*TY_G19*TY_G210 - TY_B25*TY_G14*TY_G211 - TY_B24*TY_G15*TY_G211 - TY_B23*TY_G16*TY_G211 - TY_B22*TY_G17*TY_G211 |
---|
1149 | TY_w[12] += -TY_B21*TY_G18*TY_G211 - TY_B25*TY_G13*TY_G212 - TY_B24*TY_G14*TY_G212 - TY_B23*TY_G15*TY_G212 - TY_B22*TY_G16*TY_G212 - TY_B21*TY_G17*TY_G212 - TY_B24*TY_G13*TY_G213 - TY_B23*TY_G14*TY_G213 - TY_B22*TY_G15*TY_G213 |
---|
1150 | TY_w[12] += -TY_B21*TY_G16*TY_G213 - TY_B25*TY_G113*TY_G22 - TY_B25*TY_G112*TY_G23 - TY_B24*TY_G113*TY_G23 + 2*TY_B14*TY_G213*TY_G23 - TY_B25*TY_G111*TY_G24 - TY_B24*TY_G112*TY_G24 - TY_B23*TY_G113*TY_G24 |
---|
1151 | TY_w[12] += 2*TY_B14*TY_G212*TY_G24 - TY_G214*(TY_B23*TY_G13 + TY_B22*TY_G14 + TY_B21*TY_G15 - 2*TY_B14*TY_G22 - 2*TY_B12*TY_G24) - TY_B25*TY_G110*TY_G25 - TY_B24*TY_G111*TY_G25 - TY_B23*TY_G112*TY_G25 |
---|
1152 | TY_w[12] += -TY_B22*TY_G113*TY_G25 + 2*TY_B14*TY_G211*TY_G25 + 2*TY_B12*TY_G213*TY_G25 - TY_B24*TY_G110*TY_G26 - TY_B23*TY_G111*TY_G26 - TY_B22*TY_G112*TY_G26 - TY_B21*TY_G113*TY_G26 - TY_B25*TY_G19*TY_G26 |
---|
1153 | TY_w[12] += 2*TY_B14*TY_G210*TY_G26 + 2*TY_B12*TY_G212*TY_G26 - TY_B23*TY_G110*TY_G27 - TY_B22*TY_G111*TY_G27 - TY_B21*TY_G112*TY_G27 - TY_B25*TY_G18*TY_G27 - TY_B24*TY_G19*TY_G27 + 2*TY_B12*TY_G211*TY_G27 |
---|
1154 | TY_w[12] += -TY_B22*TY_G110*TY_G28 - TY_B21*TY_G111*TY_G28 - TY_B25*TY_G17*TY_G28 - TY_B24*TY_G18*TY_G28 - TY_B23*TY_G19*TY_G28 + 2*TY_B12*TY_G210*TY_G28 - TY_B21*TY_G110*TY_G29 - TY_B25*TY_G16*TY_G29 - TY_B24*TY_G17*TY_G29 |
---|
1155 | TY_w[12] += -TY_B23*TY_G18*TY_G29 - TY_B22*TY_G19*TY_G29 + 2*TY_B14*TY_G27*TY_G29 + TY_B34*(2*(TY_G113*TY_G13 + TY_G112*TY_G14 + TY_G111*TY_G15 + TY_G110*TY_G16 + TY_G17*TY_G19) + pow(TY_G18,2)) |
---|
1156 | TY_w[12] += TY_B32*(2*(TY_G113*TY_G15 + TY_G112*TY_G16 + TY_G111*TY_G17 + TY_G110*TY_G18) + pow(TY_G19,2)) + TY_B14*pow(TY_G28,2) + TY_B12*pow(TY_G29,2) |
---|
1157 | |
---|
1158 | TY_w[13] = 2*TY_B32*(TY_G113*TY_G16 + TY_G112*TY_G17 + TY_G111*TY_G18 + TY_G110*TY_G19) + 2*TY_B34*(TY_G113*TY_G14 + TY_G112*TY_G15 + TY_G111*TY_G16 + TY_G110*TY_G17 + TY_G18*TY_G19) - TY_B21*TY_G110*TY_G210 |
---|
1159 | TY_w[13] += -TY_B25*TY_G16*TY_G210 - TY_B24*TY_G17*TY_G210 - TY_B23*TY_G18*TY_G210 - TY_B22*TY_G19*TY_G210 - TY_B25*TY_G15*TY_G211 - TY_B24*TY_G16*TY_G211 - TY_B23*TY_G17*TY_G211 - TY_B22*TY_G18*TY_G211 - TY_B21*TY_G19*TY_G211 |
---|
1160 | TY_w[13] += -TY_B25*TY_G14*TY_G212 - TY_B24*TY_G15*TY_G212 - TY_B23*TY_G16*TY_G212 - TY_B22*TY_G17*TY_G212 - TY_B21*TY_G18*TY_G212 - TY_B25*TY_G13*TY_G213 - TY_B24*TY_G14*TY_G213 - TY_B23*TY_G15*TY_G213 - TY_B22*TY_G16*TY_G213 |
---|
1161 | TY_w[13] += -TY_B21*TY_G17*TY_G213 - TY_B25*TY_G113*TY_G23 - TY_B25*TY_G112*TY_G24 - TY_B24*TY_G113*TY_G24 + 2*TY_B14*TY_G213*TY_G24 - TY_B25*TY_G111*TY_G25 - TY_B24*TY_G112*TY_G25 - TY_B23*TY_G113*TY_G25 |
---|
1162 | TY_w[13] += 2*TY_B14*TY_G212*TY_G25 - TY_G214*(TY_B24*TY_G13 + TY_B23*TY_G14 + TY_B22*TY_G15 + TY_B21*TY_G16 - 2*TY_B14*TY_G23 - 2*TY_B12*TY_G25) - TY_B25*TY_G110*TY_G26 - TY_B24*TY_G111*TY_G26 - TY_B23*TY_G112*TY_G26 |
---|
1163 | TY_w[13] += -TY_B22*TY_G113*TY_G26 + 2*TY_B14*TY_G211*TY_G26 + 2*TY_B12*TY_G213*TY_G26 - TY_B24*TY_G110*TY_G27 - TY_B23*TY_G111*TY_G27 - TY_B22*TY_G112*TY_G27 - TY_B21*TY_G113*TY_G27 - TY_B25*TY_G19*TY_G27 |
---|
1164 | TY_w[13] += 2*TY_B14*TY_G210*TY_G27 + 2*TY_B12*TY_G212*TY_G27 - TY_B23*TY_G110*TY_G28 - TY_B22*TY_G111*TY_G28 - TY_B21*TY_G112*TY_G28 - TY_B25*TY_G18*TY_G28 - TY_B24*TY_G19*TY_G28 + 2*TY_B12*TY_G211*TY_G28 |
---|
1165 | TY_w[13] += -TY_B22*TY_G110*TY_G29 - TY_B21*TY_G111*TY_G29 - TY_B25*TY_G17*TY_G29 - TY_B24*TY_G18*TY_G29 - TY_B23*TY_G19*TY_G29 + 2*TY_B12*TY_G210*TY_G29 + 2*TY_B14*TY_G28*TY_G29 |
---|
1166 | |
---|
1167 | TY_w[14] = -(TY_B22*TY_G110*TY_G210) - TY_B21*TY_G111*TY_G210 - TY_B25*TY_G17*TY_G210 - TY_B24*TY_G18*TY_G210 - TY_B23*TY_G19*TY_G210 - TY_B21*TY_G110*TY_G211 - TY_B25*TY_G16*TY_G211 - TY_B24*TY_G17*TY_G211 |
---|
1168 | TY_w[14] += -TY_B23*TY_G18*TY_G211 - TY_B22*TY_G19*TY_G211 - TY_B25*TY_G15*TY_G212 - TY_B24*TY_G16*TY_G212 - TY_B23*TY_G17*TY_G212 - TY_B22*TY_G18*TY_G212 - TY_B21*TY_G19*TY_G212 - TY_B25*TY_G14*TY_G213 - TY_B24*TY_G15*TY_G213 |
---|
1169 | TY_w[14] += -TY_B23*TY_G16*TY_G213 - TY_B22*TY_G17*TY_G213 - TY_B21*TY_G18*TY_G213 - TY_B25*TY_G113*TY_G24 - TY_B25*TY_G112*TY_G25 - TY_B24*TY_G113*TY_G25 + 2*TY_B14*TY_G213*TY_G25 - TY_B25*TY_G111*TY_G26 - TY_B24*TY_G112*TY_G26 |
---|
1170 | TY_w[14] += -TY_B23*TY_G113*TY_G26 + 2*TY_B14*TY_G212*TY_G26 - TY_G214*(TY_B25*TY_G13 + TY_B24*TY_G14 + TY_B23*TY_G15 + TY_B22*TY_G16 + TY_B21*TY_G17 - 2*TY_B14*TY_G24 - 2*TY_B12*TY_G26) - TY_B25*TY_G110*TY_G27 |
---|
1171 | TY_w[14] += -TY_B24*TY_G111*TY_G27 - TY_B23*TY_G112*TY_G27 - TY_B22*TY_G113*TY_G27 + 2*TY_B14*TY_G211*TY_G27 + 2*TY_B12*TY_G213*TY_G27 - TY_B24*TY_G110*TY_G28 - TY_B23*TY_G111*TY_G28 - TY_B22*TY_G112*TY_G28 |
---|
1172 | TY_w[14] += -TY_B21*TY_G113*TY_G28 - TY_B25*TY_G19*TY_G28 + 2*TY_B14*TY_G210*TY_G28 + 2*TY_B12*TY_G212*TY_G28 - TY_B23*TY_G110*TY_G29 - TY_B22*TY_G111*TY_G29 - TY_B21*TY_G112*TY_G29 - TY_B25*TY_G18*TY_G29 - TY_B24*TY_G19*TY_G29 |
---|
1173 | TY_w[14] += 2*TY_B12*TY_G211*TY_G29 + TY_B32*(2*(TY_G113*TY_G17 + TY_G112*TY_G18 + TY_G111*TY_G19) + pow(TY_G110,2)) |
---|
1174 | TY_w[14] += TY_B34*(2*(TY_G113*TY_G15 + TY_G112*TY_G16 + TY_G111*TY_G17 + TY_G110*TY_G18) + pow(TY_G19,2)) + TY_B12*pow(TY_G210,2) + TY_B14*pow(TY_G29,2) |
---|
1175 | |
---|
1176 | TY_w[15] = 2*TY_B34*(TY_G113*TY_G16 + TY_G112*TY_G17 + TY_G111*TY_G18 + TY_G110*TY_G19) + 2*TY_B32*(TY_G110*TY_G111 + TY_G113*TY_G18 + TY_G112*TY_G19) - TY_B23*TY_G110*TY_G210 - TY_B22*TY_G111*TY_G210 |
---|
1177 | TY_w[15] += -TY_B21*TY_G112*TY_G210 - TY_B25*TY_G18*TY_G210 - TY_B24*TY_G19*TY_G210 - TY_B22*TY_G110*TY_G211 - TY_B21*TY_G111*TY_G211 - TY_B25*TY_G17*TY_G211 - TY_B24*TY_G18*TY_G211 - TY_B23*TY_G19*TY_G211 |
---|
1178 | TY_w[15] += 2*TY_B12*TY_G210*TY_G211 - TY_B21*TY_G110*TY_G212 - TY_B25*TY_G16*TY_G212 - TY_B24*TY_G17*TY_G212 - TY_B23*TY_G18*TY_G212 - TY_B22*TY_G19*TY_G212 - TY_B25*TY_G15*TY_G213 - TY_B24*TY_G16*TY_G213 |
---|
1179 | TY_w[15] += -TY_B23*TY_G17*TY_G213 - TY_B22*TY_G18*TY_G213 - TY_B21*TY_G19*TY_G213 - TY_B25*TY_G113*TY_G25 - TY_B25*TY_G112*TY_G26 - TY_B24*TY_G113*TY_G26 + 2*TY_B14*TY_G213*TY_G26 - TY_B25*TY_G111*TY_G27 - TY_B24*TY_G112*TY_G27 |
---|
1180 | TY_w[15] += -TY_B23*TY_G113*TY_G27 + 2*TY_B14*TY_G212*TY_G27 - TY_G214*(TY_B25*TY_G14 + TY_B24*TY_G15 + TY_B23*TY_G16 + TY_B22*TY_G17 + TY_B21*TY_G18 - 2*TY_B14*TY_G25 - 2*TY_B12*TY_G27) - TY_B25*TY_G110*TY_G28 |
---|
1181 | TY_w[15] += -TY_B24*TY_G111*TY_G28 - TY_B23*TY_G112*TY_G28 - TY_B22*TY_G113*TY_G28 + 2*TY_B14*TY_G211*TY_G28 + 2*TY_B12*TY_G213*TY_G28 - TY_B24*TY_G110*TY_G29 - TY_B23*TY_G111*TY_G29 - TY_B22*TY_G112*TY_G29 |
---|
1182 | TY_w[15] += -TY_B21*TY_G113*TY_G29 - TY_B25*TY_G19*TY_G29 + 2*TY_B14*TY_G210*TY_G29 + 2*TY_B12*TY_G212*TY_G29 |
---|
1183 | |
---|
1184 | TY_w[16] = -(TY_B24*TY_G110*TY_G210) - TY_B23*TY_G111*TY_G210 - TY_B22*TY_G112*TY_G210 - TY_B21*TY_G113*TY_G210 - TY_B25*TY_G19*TY_G210 - TY_B23*TY_G110*TY_G211 - TY_B22*TY_G111*TY_G211 - TY_B21*TY_G112*TY_G211 |
---|
1185 | TY_w[16] += -TY_B25*TY_G18*TY_G211 - TY_B24*TY_G19*TY_G211 - TY_B22*TY_G110*TY_G212 - TY_B21*TY_G111*TY_G212 - TY_B25*TY_G17*TY_G212 - TY_B24*TY_G18*TY_G212 - TY_B23*TY_G19*TY_G212 + 2*TY_B12*TY_G210*TY_G212 |
---|
1186 | TY_w[16] += -TY_B21*TY_G110*TY_G213 - TY_B25*TY_G16*TY_G213 - TY_B24*TY_G17*TY_G213 - TY_B23*TY_G18*TY_G213 - TY_B22*TY_G19*TY_G213 - TY_B25*TY_G113*TY_G26 - TY_B25*TY_G112*TY_G27 - TY_B24*TY_G113*TY_G27 |
---|
1187 | TY_w[16] += 2*TY_B14*TY_G213*TY_G27 - TY_B25*TY_G111*TY_G28 - TY_B24*TY_G112*TY_G28 - TY_B23*TY_G113*TY_G28 + 2*TY_B14*TY_G212*TY_G28 |
---|
1188 | TY_w[16] += -TY_G214*(TY_B25*TY_G15 + TY_B24*TY_G16 + TY_B23*TY_G17 + TY_B22*TY_G18 + TY_B21*TY_G19 - 2*TY_B14*TY_G26 - 2*TY_B12*TY_G28) - TY_B25*TY_G110*TY_G29 - TY_B24*TY_G111*TY_G29 - TY_B23*TY_G112*TY_G29 |
---|
1189 | TY_w[16] += -TY_B22*TY_G113*TY_G29 + 2*TY_B14*TY_G211*TY_G29 + 2*TY_B12*TY_G213*TY_G29 + TY_B34*(2*(TY_G113*TY_G17 + TY_G112*TY_G18 + TY_G111*TY_G19) + pow(TY_G110,2)) |
---|
1190 | TY_w[16] += TY_B32*(2*TY_G110*TY_G112 + 2*TY_G113*TY_G19 + pow(TY_G111,2)) + TY_B14*pow(TY_G210,2) + TY_B12*pow(TY_G211,2) |
---|
1191 | |
---|
1192 | TY_w[17] = 2*TY_B32*(TY_G111*TY_G112 + TY_G110*TY_G113) + 2*TY_B34*(TY_G110*TY_G111 + TY_G113*TY_G18 + TY_G112*TY_G19) - TY_B25*TY_G110*TY_G210 - TY_B24*TY_G111*TY_G210 - TY_B23*TY_G112*TY_G210 - TY_B22*TY_G113*TY_G210 |
---|
1193 | TY_w[17] += -TY_B24*TY_G110*TY_G211 - TY_B23*TY_G111*TY_G211 - TY_B22*TY_G112*TY_G211 - TY_B21*TY_G113*TY_G211 - TY_B25*TY_G19*TY_G211 + 2*TY_B14*TY_G210*TY_G211 - TY_B23*TY_G110*TY_G212 - TY_B22*TY_G111*TY_G212 |
---|
1194 | TY_w[17] += -TY_B21*TY_G112*TY_G212 - TY_B25*TY_G18*TY_G212 - TY_B24*TY_G19*TY_G212 + 2*TY_B12*TY_G211*TY_G212 - TY_B22*TY_G110*TY_G213 - TY_B21*TY_G111*TY_G213 - TY_B25*TY_G17*TY_G213 - TY_B24*TY_G18*TY_G213 |
---|
1195 | TY_w[17] += -TY_B23*TY_G19*TY_G213 + 2*TY_B12*TY_G210*TY_G213 - TY_B25*TY_G113*TY_G27 - TY_B25*TY_G112*TY_G28 - TY_B24*TY_G113*TY_G28 + 2*TY_B14*TY_G213*TY_G28 - TY_B25*TY_G111*TY_G29 - TY_B24*TY_G112*TY_G29 |
---|
1196 | TY_w[17] += -TY_B23*TY_G113*TY_G29 + 2*TY_B14*TY_G212*TY_G29 - TY_G214*(TY_B21*TY_G110 + TY_B25*TY_G16 + TY_B24*TY_G17 + TY_B23*TY_G18 + TY_B22*TY_G19 - 2*TY_B14*TY_G27 - 2*TY_B12*TY_G29) |
---|
1197 | |
---|
1198 | TY_w[18] = -(TY_B25*TY_G111*TY_G210) - TY_B24*TY_G112*TY_G210 - TY_B23*TY_G113*TY_G210 - TY_B25*TY_G110*TY_G211 - TY_B24*TY_G111*TY_G211 - TY_B23*TY_G112*TY_G211 - TY_B22*TY_G113*TY_G211 - TY_B24*TY_G110*TY_G212 |
---|
1199 | TY_w[18] += -TY_B23*TY_G111*TY_G212 - TY_B22*TY_G112*TY_G212 - TY_B21*TY_G113*TY_G212 - TY_B25*TY_G19*TY_G212 + 2*TY_B14*TY_G210*TY_G212 - TY_B23*TY_G110*TY_G213 - TY_B22*TY_G111*TY_G213 - TY_B21*TY_G112*TY_G213 |
---|
1200 | TY_w[18] += -TY_B25*TY_G18*TY_G213 - TY_B24*TY_G19*TY_G213 + 2*TY_B12*TY_G211*TY_G213 - TY_B25*TY_G113*TY_G28 |
---|
1201 | TY_w[18] += -TY_G214*(TY_B22*TY_G110 + TY_B21*TY_G111 + TY_B25*TY_G17 + TY_B24*TY_G18 + TY_B23*TY_G19 - 2*TY_B12*TY_G210 - 2*TY_B14*TY_G28) - TY_B25*TY_G112*TY_G29 - TY_B24*TY_G113*TY_G29 + 2*TY_B14*TY_G213*TY_G29 |
---|
1202 | TY_w[18] += TY_B34*(2*TY_G110*TY_G112 + 2*TY_G113*TY_G19 + pow(TY_G111,2)) + TY_B32*(2*TY_G111*TY_G113 + pow(TY_G112,2)) + TY_B14*pow(TY_G211,2) + TY_B12*pow(TY_G212,2) |
---|
1203 | |
---|
1204 | TY_w[19] = 2*TY_B32*TY_G112*TY_G113 + 2*TY_B34*(TY_G111*TY_G112 + TY_G110*TY_G113) - TY_B25*TY_G112*TY_G210 - TY_B24*TY_G113*TY_G210 - TY_B25*TY_G111*TY_G211 - TY_B24*TY_G112*TY_G211 - TY_B23*TY_G113*TY_G211 |
---|
1205 | TY_w[19] += -TY_B25*TY_G110*TY_G212 - TY_B24*TY_G111*TY_G212 - TY_B23*TY_G112*TY_G212 - TY_B22*TY_G113*TY_G212 + 2*TY_B14*TY_G211*TY_G212 - TY_B24*TY_G110*TY_G213 - TY_B23*TY_G111*TY_G213 - TY_B22*TY_G112*TY_G213 |
---|
1206 | TY_w[19] += -TY_B21*TY_G113*TY_G213 - TY_B25*TY_G19*TY_G213 + 2*TY_B14*TY_G210*TY_G213 + 2*TY_B12*TY_G212*TY_G213 - TY_B25*TY_G113*TY_G29 |
---|
1207 | TY_w[19] += -TY_G214*(TY_B23*TY_G110 + TY_B22*TY_G111 + TY_B21*TY_G112 + TY_B25*TY_G18 + TY_B24*TY_G19 - 2*TY_B12*TY_G211 - 2*TY_B14*TY_G29) |
---|
1208 | |
---|
1209 | TY_w[20] = -(TY_B25*TY_G113*TY_G210) - TY_B25*TY_G112*TY_G211 - TY_B24*TY_G113*TY_G211 - TY_B25*TY_G111*TY_G212 - TY_B24*TY_G112*TY_G212 - TY_B23*TY_G113*TY_G212 - TY_B25*TY_G110*TY_G213 - TY_B24*TY_G111*TY_G213 |
---|
1210 | TY_w[20] += -TY_B23*TY_G112*TY_G213 - TY_B22*TY_G113*TY_G213 + 2*TY_B14*TY_G211*TY_G213 - (TY_B24*TY_G110 + TY_B23*TY_G111 + TY_B22*TY_G112 + TY_B21*TY_G113 + TY_B25*TY_G19 - 2*TY_B14*TY_G210 - 2*TY_B12*TY_G212)*TY_G214 |
---|
1211 | TY_w[20] += TY_B34*(2*TY_G111*TY_G113 + pow(TY_G112,2)) + TY_B32*pow(TY_G113,2) + TY_B14*pow(TY_G212,2) + TY_B12*pow(TY_G213,2) |
---|
1212 | |
---|
1213 | TY_w[21] = TY_B25*(TY_A23*TY_B14*(-3*TY_A52*TY_B24*TY_B25 + (2*TY_A43*TY_B24 + TY_A42*TY_B25)*TY_B34) + TY_B25*(TY_A22*TY_B14*(-(TY_A52*TY_B25) + TY_A43*TY_B34) + TY_A12*(4*TY_A52*TY_B24*TY_B25 - (3*TY_A43*TY_B24 + TY_A42*TY_B25)*TY_B34)))*pow(TY_B34,3) |
---|
1214 | |
---|
1215 | TY_w[22] = (-(TY_A23*TY_B14) + TY_A12*TY_B25)*(TY_A52*TY_B25 - TY_A43*TY_B34)*pow(TY_B25,2)*pow(TY_B34,3) |
---|
1216 | |
---|
1217 | if( prnt ) |
---|
1218 | printf "\rCoefficients of polynomial\r" |
---|
1219 | variable i |
---|
1220 | for ( i = 0; i < 23; i+=1 ) |
---|
1221 | printf "w[%d] = %g\r", i, TY_w[i] |
---|
1222 | endfor |
---|
1223 | printf "\r" |
---|
1224 | endif |
---|
1225 | |
---|
1226 | end |
---|
1227 | |
---|
1228 | Function TY_capQ( d2 ) |
---|
1229 | Variable d2 |
---|
1230 | |
---|
1231 | NVAR TY_B32 = root:yuk:TY_B32 |
---|
1232 | NVAR TY_B34 = root:yuk:TY_B34 |
---|
1233 | |
---|
1234 | return d2 * TY_B32 + pow( d2, 3 ) * TY_B34 |
---|
1235 | end |
---|
1236 | |
---|
1237 | Function TY_V( d2 ) |
---|
1238 | variable d2 |
---|
1239 | |
---|
1240 | NVAR TY_G13 = root:yuk:TY_G13 |
---|
1241 | NVAR TY_G14 = root:yuk:TY_G14 |
---|
1242 | NVAR TY_G15 = root:yuk:TY_G15 |
---|
1243 | NVAR TY_G16 = root:yuk:TY_G16 |
---|
1244 | NVAR TY_G17 = root:yuk:TY_G17 |
---|
1245 | NVAR TY_G18 = root:yuk:TY_G18 |
---|
1246 | NVAR TY_G19 = root:yuk:TY_G19 |
---|
1247 | NVAR TY_G110 = root:yuk:TY_G110 |
---|
1248 | NVAR TY_G111 = root:yuk:TY_G111 |
---|
1249 | NVAR TY_G112 = root:yuk:TY_G112 |
---|
1250 | NVAR TY_G113 = root:yuk:TY_G113 |
---|
1251 | |
---|
1252 | return -( pow( d2, 2 ) * TY_G13 + pow( d2, 3 ) * TY_G14 + pow( d2, 4 ) * TY_G15 + pow( d2, 5 ) * TY_G16 + pow( d2, 6 ) * TY_G17 + pow( d2, 7 ) * TY_G18 + pow( d2, 8 ) * TY_G19 + pow( d2, 9 ) * TY_G110 + pow( d2, 10 ) * TY_G111 + pow( d2, 11 ) * TY_G112 + pow( d2, 12 ) * TY_G113 ) |
---|
1253 | end |
---|
1254 | |
---|
1255 | Function TY_capW( d2 ) |
---|
1256 | Variable d2 |
---|
1257 | |
---|
1258 | variable tmp |
---|
1259 | |
---|
1260 | NVAR TY_G22 = root:yuk:TY_G22 |
---|
1261 | NVAR TY_G23 = root:yuk:TY_G23 |
---|
1262 | NVAR TY_G24 = root:yuk:TY_G24 |
---|
1263 | NVAR TY_G25 = root:yuk:TY_G25 |
---|
1264 | NVAR TY_G26 = root:yuk:TY_G26 |
---|
1265 | NVAR TY_G27 = root:yuk:TY_G27 |
---|
1266 | NVAR TY_G28 = root:yuk:TY_G28 |
---|
1267 | NVAR TY_G29 = root:yuk:TY_G29 |
---|
1268 | NVAR TY_G210 = root:yuk:TY_G210 |
---|
1269 | NVAR TY_G211 = root:yuk:TY_G211 |
---|
1270 | NVAR TY_G212 = root:yuk:TY_G212 |
---|
1271 | NVAR TY_G213 = root:yuk:TY_G213 |
---|
1272 | NVAR TY_G214 = root:yuk:TY_G214 |
---|
1273 | |
---|
1274 | |
---|
1275 | tmp = d2 * TY_G22 + pow( d2, 2 ) * TY_G23 + pow( d2, 3 ) * TY_G24 + pow( d2, 4 ) * TY_G25 + pow( d2, 5 ) * TY_G26 |
---|
1276 | tmp += pow( d2, 6 ) * TY_G27 + pow( d2, 7 ) * TY_G28 + pow( d2, 8 ) * TY_G29 + pow( d2, 9 ) * TY_G210 |
---|
1277 | tmp += pow( d2, 10 ) * TY_G211 + pow( d2, 11 ) * TY_G212 + pow( d2, 12 ) * TY_G213 + pow( d2, 13 ) * TY_G214 |
---|
1278 | |
---|
1279 | return tmp |
---|
1280 | end |
---|
1281 | |
---|
1282 | Function TY_X( d2 ) |
---|
1283 | Variable d2 |
---|
1284 | |
---|
1285 | return TY_V( d2 ) / TY_capW( d2 ) |
---|
1286 | end |
---|
1287 | |
---|
1288 | // solve the linear system depending on d1, d2 using Cramer's rule |
---|
1289 | // |
---|
1290 | // a,b,c1,c2 are passed by reference and returned |
---|
1291 | // |
---|
1292 | Function TY_SolveLinearEquations( d1, d2, a, b, c1, c2) |
---|
1293 | Variable d1, d2, &a, &b, &c1, &c2 |
---|
1294 | |
---|
1295 | |
---|
1296 | NVAR TY_q22 = root:yuk:TY_q22 |
---|
1297 | NVAR TY_qa12 = root:yuk:TY_qa12 |
---|
1298 | NVAR TY_qa21 = root:yuk:TY_qa21 |
---|
1299 | NVAR TY_qa22 = root:yuk:TY_qa22 |
---|
1300 | NVAR TY_qa23 = root:yuk:TY_qa23 |
---|
1301 | NVAR TY_qa32 = root:yuk:TY_qa32 |
---|
1302 | |
---|
1303 | NVAR TY_qb12 = root:yuk:TY_qb12 |
---|
1304 | NVAR TY_qb21 = root:yuk:TY_qb21 |
---|
1305 | NVAR TY_qb22 = root:yuk:TY_qb22 |
---|
1306 | NVAR TY_qb23 = root:yuk:TY_qb23 |
---|
1307 | NVAR TY_qb32 = root:yuk:TY_qb32 |
---|
1308 | |
---|
1309 | NVAR TY_qc112 = root:yuk:TY_qc112 |
---|
1310 | NVAR TY_qc121 = root:yuk:TY_qc121 |
---|
1311 | NVAR TY_qc122 = root:yuk:TY_qc122 |
---|
1312 | NVAR TY_qc123 = root:yuk:TY_qc123 |
---|
1313 | NVAR TY_qc132 = root:yuk:TY_qc132 |
---|
1314 | |
---|
1315 | NVAR TY_qc212 = root:yuk:TY_qc212 |
---|
1316 | NVAR TY_qc221 = root:yuk:TY_qc221 |
---|
1317 | NVAR TY_qc222 = root:yuk:TY_qc222 |
---|
1318 | NVAR TY_qc223 = root:yuk:TY_qc223 |
---|
1319 | NVAR TY_qc232 = root:yuk:TY_qc232 |
---|
1320 | |
---|
1321 | Variable det = TY_q22 * d1 * d2 |
---|
1322 | Variable det_a = TY_qa12 * d2 + TY_qa21 * d1 + TY_qa22 * d1 * d2 + TY_qa23 * d1 * pow( d2, 2 ) + TY_qa32 * pow( d1, 2 ) * d2 |
---|
1323 | Variable det_b = TY_qb12 * d2 + TY_qb21 * d1 + TY_qb22 * d1 * d2 + TY_qb23 * d1 * pow( d2, 2 ) + TY_qb32 * pow( d1, 2 ) * d2 |
---|
1324 | Variable det_c1 = TY_qc112 * d2 + TY_qc121 * d1 + TY_qc122 * d1 * d2 + TY_qc123 * d1 * pow( d2, 2 ) + TY_qc132 * pow( d1, 2 ) * d2 |
---|
1325 | Variable det_c2 = TY_qc212 * d2 + TY_qc221 * d1 + TY_qc222 * d1 * d2 + TY_qc223 * d1 * pow( d2, 2 ) + TY_qc232 * pow( d1, 2 ) * d2 |
---|
1326 | |
---|
1327 | a = det_a / det |
---|
1328 | b = det_b / det |
---|
1329 | c1 = det_c1 / det |
---|
1330 | c2 = det_c2 / det |
---|
1331 | end |
---|
1332 | |
---|
1333 | //Solve the system of linear and nonlinear equations for given Zi, Ki, phi which gives at |
---|
1334 | // most 22 solutions for the parameters a,b,ci,di. From the set of solutions choose the |
---|
1335 | // physical one and return it. |
---|
1336 | // |
---|
1337 | // |
---|
1338 | // a,b,c1,c2,d1,d2 are passed by reference and returned |
---|
1339 | // |
---|
1340 | Function TY_SolveEquations( Z1, Z2, K1, K2, phi, a, b, c1, c2, d1, d2, prnt ) |
---|
1341 | Variable Z1, Z2, K1, K2, phi, &a, &b, &c1, &c2, &d1, &d2, prnt |
---|
1342 | |
---|
1343 | |
---|
1344 | // reduce system to a polynomial from which all solution are extracted |
---|
1345 | // by doing that a lot of global background variables are set |
---|
1346 | TY_ReduceNonlinearSystem( Z1, Z2, K1, K2, phi, prnt ) |
---|
1347 | |
---|
1348 | // the two coupled non-linear eqautions were reduced to a |
---|
1349 | // 22nd order polynomial, the roots are give all possible solutions |
---|
1350 | // for d2, than d1 can be computed by the function X |
---|
1351 | |
---|
1352 | Make/O/D/N=23 real_coefficient,imag_coefficient |
---|
1353 | Make/O/D/N=22 real_root,imag_root |
---|
1354 | |
---|
1355 | //integer degree of polynomial |
---|
1356 | variable degree = 22 |
---|
1357 | Variable i |
---|
1358 | |
---|
1359 | WAVE TY_w = TY_w |
---|
1360 | |
---|
1361 | |
---|
1362 | //// |
---|
1363 | // now I need to replace this solution with FindRoots/P to get the polynomial roots |
---|
1364 | //// |
---|
1365 | |
---|
1366 | // vector of real and imaginary coefficients in order of INCREASING powers |
---|
1367 | for ( i = 0; i <= degree; i+=1 ) |
---|
1368 | // the global variablw TY_w was set by TY_ReduceNonlinearSystem |
---|
1369 | real_coefficient[i] = TY_w[i] |
---|
1370 | // imag_coefficient[i] = 0.; |
---|
1371 | endfor |
---|
1372 | |
---|
1373 | // zrhqr(real_coefficient, degree, NR_r, NR_i); |
---|
1374 | |
---|
1375 | FindRoots/P=real_coefficient |
---|
1376 | |
---|
1377 | WAVE/C W_polyRoots = W_polyRoots |
---|
1378 | |
---|
1379 | for(i=0; i<degree; i+=1) |
---|
1380 | real_root[i] = real(W_polyRoots[i]) |
---|
1381 | imag_root[i] = imag(W_polyRoots[i]) |
---|
1382 | endfor |
---|
1383 | |
---|
1384 | //end - NR solution of polynomial |
---|
1385 | |
---|
1386 | |
---|
1387 | // show the result if in debug mode |
---|
1388 | Variable x, y |
---|
1389 | if ( prnt ) |
---|
1390 | for ( i = 0; i < degree; i+=1 ) |
---|
1391 | x = real_root[i] |
---|
1392 | y = imag_root[i] |
---|
1393 | if ( chop( y ) == 0 ) |
---|
1394 | printf "root(%d) = %g\r", i+1, x |
---|
1395 | else |
---|
1396 | printf "root(%d) = %g + %g i\r", i+1, x, y |
---|
1397 | endif |
---|
1398 | endfor |
---|
1399 | printf "\r" |
---|
1400 | endif |
---|
1401 | |
---|
1402 | |
---|
1403 | |
---|
1404 | // select real roots and those satisfying Q(x) != 0 and W(x) != 0 |
---|
1405 | // Paper: Cluster formation in two-Yukawa Fluids, J. Chem. Phys. 122, 2005 |
---|
1406 | // The right set of (a, b, c1, c2, d1, d2) should have the following properties: |
---|
1407 | // (1) a > 0 |
---|
1408 | // (2) d1, d2 are real |
---|
1409 | // (3) vi/Ki > 0 <=> g(Zi) > 0 |
---|
1410 | // (4) if there is still more than root, calculate g(r) for each root |
---|
1411 | // and g(r) of the correct root should have the minimum average value |
---|
1412 | // inside the hardcore |
---|
1413 | Variable var_a, var_b, var_c1, var_c2, var_d1, var_d2 |
---|
1414 | Make/O/D/N=22 sol_a, sol_b, sol_c1, sol_c2, sol_d1, sol_d2 |
---|
1415 | |
---|
1416 | Variable j = 0 |
---|
1417 | for ( i = 0; i < degree; i+=1 ) |
---|
1418 | |
---|
1419 | x = real_root[i] |
---|
1420 | y = imag_root[i] |
---|
1421 | |
---|
1422 | if ( chop( y ) == 0 && TY_capW( x ) != 0 && TY_capQ( x ) != 0 ) |
---|
1423 | |
---|
1424 | var_d1 = TY_X( x ) |
---|
1425 | var_d2 = x |
---|
1426 | |
---|
1427 | // solution of linear system for given d1, d2 to obtain a,b,ci,di |
---|
1428 | // var_a, var_b, var_c1, var_c2 passed by reference |
---|
1429 | TY_SolveLinearEquations( var_d1, var_d2, var_a, var_b, var_c1, var_c2 ) |
---|
1430 | |
---|
1431 | // select physical solutions, for details check paper: "Cluster formation in |
---|
1432 | // two-Yukawa fluids", J. Chem. Phys. 122 (2005) |
---|
1433 | if ( var_a > 0 && TY_g( Z1, phi, Z1, Z2, var_a, var_b, var_c1, var_c2, var_d1, var_d2 ) > 0 && TY_g( Z2, phi, Z1, Z2, var_a, var_b, var_c1, var_c2, var_d1, var_d2 ) > 0 ) |
---|
1434 | sol_a[j] = var_a |
---|
1435 | sol_b[j] = var_b |
---|
1436 | sol_c1[j] = var_c1 |
---|
1437 | sol_c2[j] = var_c2 |
---|
1438 | sol_d1[j] = var_d1 |
---|
1439 | sol_d2[j] = var_d2 |
---|
1440 | |
---|
1441 | if ( prnt ) |
---|
1442 | Variable eq1 = chop( TY_LinearEquation_1( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1443 | Variable eq2 = chop( TY_LinearEquation_2( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1444 | Variable eq3 = chop( TY_LinearEquation_3( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1445 | Variable eq4 = chop( TY_LinearEquation_4( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1446 | Variable eq5 = chop( TY_NonlinearEquation_1( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1447 | Variable eq6 = chop( TY_NonlinearEquation_2( Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) ) |
---|
1448 | |
---|
1449 | printf "solution[%d] = (%g, %g, %g, %g, %g, %g), ( eq == 0 ) = (%g, %g, %g, %g, %g, %g)\r", j, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j], eq1 , eq2, eq3, eq4, eq5, eq6 |
---|
1450 | endif |
---|
1451 | |
---|
1452 | j+=1 |
---|
1453 | endif //var_a >0... |
---|
1454 | endif //chop |
---|
1455 | endfor |
---|
1456 | // number remaining roots |
---|
1457 | Variable n_roots = j |
---|
1458 | |
---|
1459 | // if there is still more than one root left, than choose the one with the minimum |
---|
1460 | // average value inside the hardcore |
---|
1461 | if ( n_roots > 1 ) |
---|
1462 | |
---|
1463 | ///// |
---|
1464 | // it seems like this section should all be replaced in bulk with internal FFT code, rather than slow integration |
---|
1465 | // |
---|
1466 | // -- also, be sure to handle r=0, or the sum will always be INF |
---|
1467 | //// |
---|
1468 | |
---|
1469 | // the number of q values should be a power of 2 |
---|
1470 | // in order to speed up the FFT |
---|
1471 | /// int n = 1 << 14; |
---|
1472 | Variable n=16384 //2^14 points |
---|
1473 | |
---|
1474 | // the maximum q value should be large enough |
---|
1475 | // to enable a reasoble approximation of g(r) |
---|
1476 | variable qmax = 16 * 10 * 2 * pi |
---|
1477 | Variable q, dq = qmax / ( n - 1 ) |
---|
1478 | |
---|
1479 | // step size for g(r) |
---|
1480 | variable dr |
---|
1481 | |
---|
1482 | // allocate memory for pair correlation function g(r) |
---|
1483 | // and structure factor S(q) |
---|
1484 | Make/O/D/N=(n) sq,gr //gr will be redimensioned!! |
---|
1485 | |
---|
1486 | // loop over all remaining roots |
---|
1487 | Variable minVal = 1e50 //a really big number |
---|
1488 | Variable selected_root = 10 |
---|
1489 | Variable sumVal = 0 |
---|
1490 | |
---|
1491 | for ( j = 0; j < n_roots; j+=1) |
---|
1492 | |
---|
1493 | // calculate structure factor at different q values |
---|
1494 | for ( i = 0; i < n; i+=1) |
---|
1495 | |
---|
1496 | q = dq * i |
---|
1497 | sq[i] = SqTwoYukawa( q, Z1, Z2, K1, K2, phi, sol_a[j], sol_b[j], sol_c1[j], sol_c2[j], sol_d1[j], sol_d2[j] ) |
---|
1498 | |
---|
1499 | if(i<10 && prnt) |
---|
1500 | printf "after SqTwoYukawa: s(q) = %g\r",sq[i] |
---|
1501 | endif |
---|
1502 | |
---|
1503 | endfor |
---|
1504 | |
---|
1505 | // calculate pair correlation function for given |
---|
1506 | // structure factor, g(r) is computed at values |
---|
1507 | // r(i) = i * dr |
---|
1508 | |
---|
1509 | // Yuk_SqToGr( phi, dq, sq, dr, gr, n ) |
---|
1510 | |
---|
1511 | |
---|
1512 | Yuk_SqToGr_FFT( phi, dq, sq, dr, gr, n ) |
---|
1513 | |
---|
1514 | // determine sum inside the hardcore |
---|
1515 | // 0 =< r < 1 of the pair-correlation function |
---|
1516 | sumVal = 0 |
---|
1517 | for (i = 0; i < floor( 1. / dr ); i+=1 ) |
---|
1518 | |
---|
1519 | sumVal += abs( gr[i] ) |
---|
1520 | |
---|
1521 | if(i<10 && prnt) |
---|
1522 | printf "g(r) in core = %g\r",abs(gr[i]) |
---|
1523 | endif |
---|
1524 | |
---|
1525 | endfor |
---|
1526 | |
---|
1527 | if ( sumVal < minVal ) |
---|
1528 | minVal = sumVal |
---|
1529 | selected_root = j |
---|
1530 | endif |
---|
1531 | |
---|
1532 | if(prnt) |
---|
1533 | printf "min = %g sum = %g\r",minVal,sumVal |
---|
1534 | endif |
---|
1535 | |
---|
1536 | endfor |
---|
1537 | |
---|
1538 | |
---|
1539 | // physical solution was found |
---|
1540 | a = sol_a [ selected_root ] //sol_a [ selected_root ]; |
---|
1541 | b = sol_b [ selected_root ] |
---|
1542 | c1 = sol_c1[ selected_root ] |
---|
1543 | c2 = sol_c2[ selected_root ] |
---|
1544 | d1 = sol_d1[ selected_root ] |
---|
1545 | d2 = sol_d2[ selected_root ] |
---|
1546 | |
---|
1547 | return 1 |
---|
1548 | |
---|
1549 | else |
---|
1550 | if ( n_roots == 1 ) |
---|
1551 | |
---|
1552 | a = sol_a [0] |
---|
1553 | b = sol_b [0] |
---|
1554 | c1 = sol_c1[0] |
---|
1555 | c2 = sol_c2[0] |
---|
1556 | d1 = sol_d1[0] |
---|
1557 | d2 = sol_d2[0] |
---|
1558 | |
---|
1559 | return 1 |
---|
1560 | else |
---|
1561 | // no solution was found |
---|
1562 | return 0 |
---|
1563 | endif |
---|
1564 | endif |
---|
1565 | |
---|
1566 | end |
---|
1567 | |
---|
1568 | |
---|
1569 | |
---|
1570 | |
---|
1571 | // |
---|
1572 | Function Yuk_SqToGr_FFT( phi, dq, sq, dr, gr, n ) |
---|
1573 | Variable phi, dq |
---|
1574 | WAVE sq |
---|
1575 | Variable &dr |
---|
1576 | WAVE gr |
---|
1577 | Variable n |
---|
1578 | |
---|
1579 | Variable npts,ii,rval,jj,qval,spread=1 |
---|
1580 | Variable alpha |
---|
1581 | |
---|
1582 | |
---|
1583 | WaveStats/Q sq |
---|
1584 | npts = V_npnts |
---|
1585 | |
---|
1586 | dr = 2*pi/(npts*dq) |
---|
1587 | |
---|
1588 | Make/O/D/N=(npts) temp |
---|
1589 | |
---|
1590 | temp = p*(sq[p] - 1) |
---|
1591 | alpha = npts * pow( dq, 3 ) / ( 24 * pi * pi * phi ) |
---|
1592 | |
---|
1593 | FFT/OUT=1/DEST=W_FFT temp |
---|
1594 | |
---|
1595 | |
---|
1596 | WAVE/C W_FFT = W_FFT |
---|
1597 | |
---|
1598 | Redimension/N=(numpnts(W_FFT)) gr |
---|
1599 | |
---|
1600 | gr = 1 + alpha/p*imag(W_FFT) |
---|
1601 | |
---|
1602 | gr[0] = 0 |
---|
1603 | |
---|
1604 | // Killwaves/Z temp |
---|
1605 | |
---|
1606 | return(0) |
---|
1607 | |
---|
1608 | End |
---|
1609 | |
---|
1610 | ////////////////////////end converted procedures ////////////////////////////////// |
---|