1 | #pragma rtGlobals=3 // Use modern global access method and strict wave access. |
---|
2 | |
---|
3 | ///////////////////////// |
---|
4 | // |
---|
5 | // Utility functions to: |
---|
6 | // calculate Q, Qx, Qy, Qz |
---|
7 | // fill the detector panels with simulated data (the model functions are here) |
---|
8 | // bin the 2D detector to 1D I(Q) based on Q and deltaQ (bin width) |
---|
9 | // |
---|
10 | ///////////////////////// |
---|
11 | |
---|
12 | |
---|
13 | |
---|
14 | |
---|
15 | // TODO: hard wired for a sphere - change this to allow minimal selections and altering of coefficients |
---|
16 | // TODO: add the "fake" 2D simulation to fill the panels which are then later averaged as I(Q) |
---|
17 | Function FillPanel_wModelData(det,qTot,type) |
---|
18 | Wave det,qTot |
---|
19 | String type |
---|
20 | |
---|
21 | SetDataFolder root:Packages:NIST:VSANS:VCALC:Front |
---|
22 | |
---|
23 | // q-values and detector arrays already allocated and calculated |
---|
24 | Duplicate/O det tmpInten,tmpSig,prob_i |
---|
25 | |
---|
26 | Variable imon,trans,thick,sdd,pixSizeX,pixSizeY,sdd_offset |
---|
27 | |
---|
28 | //imon = V_BeamIntensity()*CountTime |
---|
29 | imon = VCALC_getImon() //TODO: currently from the panel, not calculated |
---|
30 | trans = 0.8 |
---|
31 | thick = 0.1 |
---|
32 | |
---|
33 | // need SDD |
---|
34 | // need pixel dimensions |
---|
35 | // nominal sdd in meters, offset in mm, want result in cm ! |
---|
36 | sdd = VCALC_getSDD(type)*100 + VCALC_getTopBottomSDDOffset(type) / 10 // result is sdd in [cm] |
---|
37 | |
---|
38 | pixSizeX = VCALC_getPixSizeX(type) // cm |
---|
39 | pixSizeY = VCALC_getPixSizeY(type) |
---|
40 | |
---|
41 | |
---|
42 | //?? pick the function from a popup on the panel? (bypass the analysis panel, or maybe it's better to |
---|
43 | // keep the panel to keep people used to using it.) |
---|
44 | // peak @ 0.1 ~ AgBeh |
---|
45 | // Make/O/D coef_BroadPeak = {1e-9, 3, 20, 100.0, 0.1,3,0.1} |
---|
46 | // |
---|
47 | // peak @ 0.015 in middle of middle detector, maybe not "real" vycor, but that is to be resolved |
---|
48 | // Make/O/D coef_BroadPeak = {1e-9, 3, 20, 500.0, 0.015,3,0.1} |
---|
49 | String funcStr = VCALC_getModelFunctionStr() |
---|
50 | strswitch(funcStr) |
---|
51 | case "Big Debye": |
---|
52 | tmpInten = V_Debye(10,3000,0.0001,qTot[p][q]) |
---|
53 | break |
---|
54 | case "Big Sphere": |
---|
55 | tmpInten = V_SphereForm(1,900,1e-6,0.01,qTot[p][q]) |
---|
56 | break |
---|
57 | case "Debye": |
---|
58 | tmpInten = V_Debye(10,300,0.0001,qTot[p][q]) |
---|
59 | break |
---|
60 | case "Sphere": |
---|
61 | tmpInten = V_SphereForm(1,60,1e-6,0.001,qTot[p][q]) |
---|
62 | break |
---|
63 | case "AgBeh": |
---|
64 | tmpInten = V_BroadPeak(1e-9,3,20,100.0,0.1,3,0.1,qTot[p][q]) |
---|
65 | break |
---|
66 | case "Vycor": |
---|
67 | tmpInten = V_BroadPeak(1e-9,3,20,500.0,0.015,3,0.1,qTot[p][q]) |
---|
68 | break |
---|
69 | case "Empty Cell": |
---|
70 | tmpInten = V_EC_Empirical(2.2e-8,3.346,0.0065,9.0,0.016,qTot[p][q]) |
---|
71 | break |
---|
72 | case "Blocked Beam": |
---|
73 | tmpInten = V_BlockedBeam(1,qTot[p][q]) |
---|
74 | break |
---|
75 | default: |
---|
76 | tmpInten = V_Debye(10,300,0.1,qTot[p][q]) |
---|
77 | endswitch |
---|
78 | |
---|
79 | |
---|
80 | /////////////// |
---|
81 | // // calculate the scattering cross section simply to be able to estimate the transmission |
---|
82 | // Variable sig_sas=0 |
---|
83 | // |
---|
84 | // // remember that the random deviate is the coherent portion ONLY - the incoherent background is |
---|
85 | // // subtracted before the calculation. |
---|
86 | // CalculateRandomDeviate(funcUnsmeared,$coefStr,wavelength,"root:Packages:NIST:SAS:ran_dev",sig_sas) |
---|
87 | // |
---|
88 | // if(sig_sas > 100) |
---|
89 | // DoAlert 0,"SAS cross section > 100. Estimates of multiple scattering are unreliable. Choosing a model with a well-defined Rg may help" |
---|
90 | // endif |
---|
91 | // |
---|
92 | // // calculate the multiple scattering fraction for display (10/2009) |
---|
93 | // Variable ii,nMax=10,tau |
---|
94 | // mScat=0 |
---|
95 | // tau = thick*sig_sas |
---|
96 | // // this sums the normalized scattering P', so the result is the fraction of multiply coherently scattered |
---|
97 | // // neutrons out of those that were scattered |
---|
98 | // for(ii=2;ii<nMax;ii+=1) |
---|
99 | // mScat += tau^(ii)/factorial(ii) |
---|
100 | //// print tau^(ii)/factorial(ii) |
---|
101 | // endfor |
---|
102 | // estTrans = exp(-1*thick*sig_sas) //thickness and sigma both in units of cm |
---|
103 | // mscat *= (estTrans)/(1-estTrans) |
---|
104 | // |
---|
105 | //// if(mScat > 0.1) // Display warning |
---|
106 | // |
---|
107 | // Print "Sig_sas = ",sig_sas |
---|
108 | //////////////////// |
---|
109 | |
---|
110 | prob_i = trans*thick*pixSizeX*pixSizeY/(sdd)^2*tmpInten //probability of a neutron in q-bin(i) |
---|
111 | |
---|
112 | tmpInten = (imon)*prob_i //tmpInten is not the model calculation anymore!! |
---|
113 | |
---|
114 | |
---|
115 | /// **** can I safely assume a Gaussian error in the count rate?? |
---|
116 | tmpSig = sqrt(tmpInten) // corrected based on John's memo, from 8/9/99 |
---|
117 | |
---|
118 | tmpInten += gnoise(tmpSig) |
---|
119 | tmpInten = (tmpInten[p][q] < 0) ? 0 : tmpInten[p][q] // MAR 2013 -- is this the right thing to do |
---|
120 | tmpInten = trunc(tmpInten) |
---|
121 | |
---|
122 | |
---|
123 | det = tmpInten |
---|
124 | |
---|
125 | // if I want "absolute" scale -- then I lose the integer nature of the detector (but keep the random) |
---|
126 | // det /= trans*thick*pixSizeX*pixSizeY/(sdd)^2*imon |
---|
127 | |
---|
128 | |
---|
129 | KillWaves/Z tmpInten,tmpSig,prob_i |
---|
130 | SetDataFolder root: |
---|
131 | |
---|
132 | return(0) |
---|
133 | End |
---|
134 | |
---|
135 | |
---|
136 | // For a given detector panel, calculate the q-values |
---|
137 | // -work with everything as arrays |
---|
138 | // Input needed: |
---|
139 | // detector data |
---|
140 | // detector type (LRTB?) |
---|
141 | // beam center (may be off the detector) |
---|
142 | // SDD |
---|
143 | // lambda |
---|
144 | // |
---|
145 | // pixel dimensions for detector type (global constants) |
---|
146 | // - data dimensions read directly from array |
---|
147 | // |
---|
148 | // --What is calculated: |
---|
149 | // array of Q |
---|
150 | // array of qx,qy,qz |
---|
151 | // array of error already exists |
---|
152 | // |
---|
153 | // |
---|
154 | // -- sdd in meters |
---|
155 | // -- lambda in Angstroms |
---|
156 | Function V_Detector_2Q(data,qTot,qx,qy,qz,xCtr,yCtr,sdd,lam,pixSizeX,pixSizeY) |
---|
157 | Wave data,qTot,qx,qy,qz |
---|
158 | Variable xCtr,yCtr,sdd,lam,pixSizeX,pixSizeY |
---|
159 | |
---|
160 | // loop over the array and calculate the values - this is done as a wave assignment |
---|
161 | // TODO -- be sure that it's p,q -- or maybe p+1,q+1 as used in WriteQIS.ipf |
---|
162 | qTot = V_CalcQval(p,q,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
163 | qx = V_CalcQX(p,q,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
164 | qy = V_CalcQY(p,q,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
165 | qz = V_CalcQZ(p,q,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
166 | |
---|
167 | return(0) |
---|
168 | End |
---|
169 | |
---|
170 | |
---|
171 | ////////////////////// |
---|
172 | // NOTE: The Q calculations are different than what is in GaussUtils in that they take into |
---|
173 | // accout the different x/y pixel sizes and the beam center not being on the detector - |
---|
174 | // off a different edge for each LRTB type |
---|
175 | ///////////////////// |
---|
176 | |
---|
177 | //function to calculate the overall q-value, given all of the necesary trig inputs |
---|
178 | //and are in detector coordinates (1,128) rather than axis values |
---|
179 | //the pixel locations need not be integers, reals are ok inputs |
---|
180 | //sdd is in meters |
---|
181 | //wavelength is in Angstroms |
---|
182 | // |
---|
183 | //returned magnitude of Q is in 1/Angstroms |
---|
184 | // |
---|
185 | Function V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
186 | Variable xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY |
---|
187 | |
---|
188 | Variable dx,dy,qval,two_theta,dist |
---|
189 | |
---|
190 | sdd *=100 //convert to cm |
---|
191 | dx = (xaxval - xctr)*pixSizeX //delta x in cm |
---|
192 | dy = (yaxval - yctr)*pixSizeY //delta y in cm |
---|
193 | dist = sqrt(dx^2 + dy^2) |
---|
194 | |
---|
195 | two_theta = atan(dist/sdd) |
---|
196 | |
---|
197 | qval = 4*Pi/lam*sin(two_theta/2) |
---|
198 | |
---|
199 | return qval |
---|
200 | End |
---|
201 | |
---|
202 | //calculates just the q-value in the x-direction on the detector |
---|
203 | //input/output is the same as CalcQval() |
---|
204 | //ALL inputs are in detector coordinates |
---|
205 | // |
---|
206 | //sdd is in meters |
---|
207 | //wavelength is in Angstroms |
---|
208 | // |
---|
209 | // repaired incorrect qx and qy calculation 3 dec 08 SRK (Lionel and C. Dewhurst) |
---|
210 | // now properly accounts for qz |
---|
211 | // |
---|
212 | Function V_CalcQX(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
213 | Variable xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY |
---|
214 | |
---|
215 | Variable qx,qval,phi,dx,dy,dist,two_theta |
---|
216 | |
---|
217 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
218 | |
---|
219 | sdd *=100 //convert to cm |
---|
220 | dx = (xaxval - xctr)*pixSizeX //delta x in cm |
---|
221 | dy = (yaxval - yctr)*pixSizeY //delta y in cm |
---|
222 | phi = V_FindPhi(dx,dy) |
---|
223 | |
---|
224 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
225 | dist = sqrt(dx^2 + dy^2) |
---|
226 | two_theta = atan(dist/sdd) |
---|
227 | |
---|
228 | qx = qval*cos(two_theta/2)*cos(phi) |
---|
229 | |
---|
230 | return qx |
---|
231 | End |
---|
232 | |
---|
233 | //calculates just the q-value in the y-direction on the detector |
---|
234 | //input/output is the same as CalcQval() |
---|
235 | //ALL inputs are in detector coordinates |
---|
236 | //sdd is in meters |
---|
237 | //wavelength is in Angstroms |
---|
238 | // |
---|
239 | // repaired incorrect qx and qy calculation 3 dec 08 SRK (Lionel and C. Dewhurst) |
---|
240 | // now properly accounts for qz |
---|
241 | // |
---|
242 | Function V_CalcQY(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
243 | Variable xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY |
---|
244 | |
---|
245 | Variable dy,qval,dx,phi,qy,dist,two_theta |
---|
246 | |
---|
247 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
248 | |
---|
249 | sdd *=100 //convert to cm |
---|
250 | dx = (xaxval - xctr)*pixSizeX //delta x in cm |
---|
251 | dy = (yaxval - yctr)*pixSizeY //delta y in cm |
---|
252 | phi = V_FindPhi(dx,dy) |
---|
253 | |
---|
254 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
255 | dist = sqrt(dx^2 + dy^2) |
---|
256 | two_theta = atan(dist/sdd) |
---|
257 | |
---|
258 | qy = qval*cos(two_theta/2)*sin(phi) |
---|
259 | |
---|
260 | return qy |
---|
261 | End |
---|
262 | |
---|
263 | //calculates just the z-component of the q-vector, not measured on the detector |
---|
264 | //input/output is the same as CalcQval() |
---|
265 | //ALL inputs are in detector coordinates |
---|
266 | //sdd is in meters |
---|
267 | //wavelength is in Angstroms |
---|
268 | // |
---|
269 | // not actually used, but here for completeness if anyone asks |
---|
270 | // |
---|
271 | Function V_CalcQZ(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
272 | Variable xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY |
---|
273 | |
---|
274 | Variable dy,qval,dx,phi,qz,dist,two_theta |
---|
275 | |
---|
276 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,pixSizeX,pixSizeY) |
---|
277 | |
---|
278 | sdd *=100 //convert to cm |
---|
279 | |
---|
280 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
281 | dx = (xaxval - xctr)*pixSizeX //delta x in cm |
---|
282 | dy = (yaxval - yctr)*pixSizeY //delta y in cm |
---|
283 | dist = sqrt(dx^2 + dy^2) |
---|
284 | two_theta = atan(dist/sdd) |
---|
285 | |
---|
286 | qz = qval*sin(two_theta/2) |
---|
287 | |
---|
288 | return qz |
---|
289 | End |
---|
290 | |
---|
291 | //phi is defined from +x axis, proceeding CCW around [0,2Pi] |
---|
292 | Threadsafe Function V_FindPhi(vx,vy) |
---|
293 | variable vx,vy |
---|
294 | |
---|
295 | variable phi |
---|
296 | |
---|
297 | phi = atan(vy/vx) //returns a value from -pi/2 to pi/2 |
---|
298 | |
---|
299 | // special cases |
---|
300 | if(vx==0 && vy > 0) |
---|
301 | return(pi/2) |
---|
302 | endif |
---|
303 | if(vx==0 && vy < 0) |
---|
304 | return(3*pi/2) |
---|
305 | endif |
---|
306 | if(vx >= 0 && vy == 0) |
---|
307 | return(0) |
---|
308 | endif |
---|
309 | if(vx < 0 && vy == 0) |
---|
310 | return(pi) |
---|
311 | endif |
---|
312 | |
---|
313 | |
---|
314 | if(vx > 0 && vy > 0) |
---|
315 | return(phi) |
---|
316 | endif |
---|
317 | if(vx < 0 && vy > 0) |
---|
318 | return(phi + pi) |
---|
319 | endif |
---|
320 | if(vx < 0 && vy < 0) |
---|
321 | return(phi + pi) |
---|
322 | endif |
---|
323 | if( vx > 0 && vy < 0) |
---|
324 | return(phi + 2*pi) |
---|
325 | endif |
---|
326 | |
---|
327 | return(phi) |
---|
328 | end |
---|
329 | |
---|
330 | Function V_SphereForm(scale,radius,delrho,bkg,x) |
---|
331 | Variable scale,radius,delrho,bkg |
---|
332 | Variable x |
---|
333 | |
---|
334 | // variables are: |
---|
335 | //[0] scale |
---|
336 | //[1] radius (A) |
---|
337 | //[2] delrho (A-2) |
---|
338 | //[3] background (cm-1) |
---|
339 | |
---|
340 | // Variable scale,radius,delrho,bkg |
---|
341 | // scale = w[0] |
---|
342 | // radius = w[1] |
---|
343 | // delrho = w[2] |
---|
344 | // bkg = w[3] |
---|
345 | |
---|
346 | |
---|
347 | // calculates scale * f^2/Vol where f=Vol*3*delrho*((sin(qr)-qrcos(qr))/qr^3 |
---|
348 | // and is rescaled to give [=] cm^-1 |
---|
349 | |
---|
350 | Variable bes,f,vol,f2 |
---|
351 | // |
---|
352 | //handle q==0 separately |
---|
353 | If(x==0) |
---|
354 | f = 4/3*pi*radius^3*delrho*delrho*scale*1e8 + bkg |
---|
355 | return(f) |
---|
356 | Endif |
---|
357 | |
---|
358 | // bes = 3*(sin(x*radius)-x*radius*cos(x*radius))/x^3/radius^3 |
---|
359 | |
---|
360 | bes = 3*sqrt(pi/(2*x*radius))*BesselJ(1.5,x*radius)/(x*radius) |
---|
361 | |
---|
362 | vol = 4*pi/3*radius^3 |
---|
363 | f = vol*bes*delrho // [=] A |
---|
364 | // normalize to single particle volume, convert to 1/cm |
---|
365 | f2 = f * f / vol * 1.0e8 // [=] 1/cm |
---|
366 | |
---|
367 | return (scale*f2+bkg) // Scale, then add in the background |
---|
368 | |
---|
369 | End |
---|
370 | |
---|
371 | Function V_Debye(scale,rg,bkg,x) |
---|
372 | Variable scale,rg,bkg |
---|
373 | Variable x |
---|
374 | |
---|
375 | // variables are: |
---|
376 | //[0] scale factor |
---|
377 | //[1] radius of gyration [A] |
---|
378 | //[2] background [cm-1] |
---|
379 | |
---|
380 | // calculates (scale*debye)+bkg |
---|
381 | Variable Pq,qr2 |
---|
382 | |
---|
383 | qr2=(x*rg)^2 |
---|
384 | Pq = 2*(exp(-(qr2))-1+qr2)/qr2^2 |
---|
385 | |
---|
386 | //scale |
---|
387 | Pq *= scale |
---|
388 | // then add in the background |
---|
389 | return (Pq+bkg) |
---|
390 | End |
---|
391 | |
---|
392 | // a sum of a power law and debye to approximate the scattering from a real empty cell |
---|
393 | // |
---|
394 | // make/O/D coef_ECEmp = {2.2e-8,3.346,0.0065,9.0,0.016} |
---|
395 | // |
---|
396 | Function V_EC_Empirical(aa,mm,scale,rg,bkg,x) |
---|
397 | Variable aa,mm,scale,rg,bkg |
---|
398 | Variable x |
---|
399 | |
---|
400 | // variables are: |
---|
401 | //[0] = A |
---|
402 | //[1] = power m |
---|
403 | //[2] scale factor |
---|
404 | //[3] radius of gyration [A] |
---|
405 | //[4] background [cm-1] |
---|
406 | |
---|
407 | Variable Iq |
---|
408 | |
---|
409 | // calculates (scale*debye)+bkg |
---|
410 | Variable Pq,qr2 |
---|
411 | |
---|
412 | // if(x*Rg < 1e-3) //added Oct 2008 to avoid numerical errors at low arg values |
---|
413 | // return(scale+bkg) |
---|
414 | // endif |
---|
415 | |
---|
416 | Iq = aa*x^-mm |
---|
417 | |
---|
418 | qr2=(x*rg)^2 |
---|
419 | Pq = 2*(exp(-(qr2))-1+qr2)/qr2^2 |
---|
420 | |
---|
421 | //scale |
---|
422 | Pq *= scale |
---|
423 | // then add the terms up |
---|
424 | return (Iq + Pq + bkg) |
---|
425 | End |
---|
426 | |
---|
427 | // blocked beam |
---|
428 | // |
---|
429 | Function V_BlockedBeam(bkg,x) |
---|
430 | Variable bkg |
---|
431 | Variable x |
---|
432 | |
---|
433 | return (bkg) |
---|
434 | End |
---|
435 | |
---|
436 | |
---|
437 | // |
---|
438 | // a broad peak to simulate silver behenate or vycor |
---|
439 | // |
---|
440 | // peak @ 0.1 ~ AgBeh |
---|
441 | // Make/O/D coef_BroadPeak = {1e-9, 3, 20, 100.0, 0.1,3,0.1} |
---|
442 | // |
---|
443 | // |
---|
444 | // peak @ 0.015 in middle of middle detector, maybe not "real" vycor, but that is to be resolved |
---|
445 | // Make/O/D coef_BroadPeak = {1e-9, 3, 20, 500.0, 0.015,3,0.1} |
---|
446 | // |
---|
447 | // |
---|
448 | Function V_BroadPeak(aa,nn,cc,LL,Qzero,mm,bgd,x) |
---|
449 | Variable aa,nn,cc,LL,Qzero,mm,bgd |
---|
450 | Variable x |
---|
451 | |
---|
452 | // variables are: |
---|
453 | //[0] Porod term scaling |
---|
454 | //[1] Porod exponent |
---|
455 | //[2] Lorentzian term scaling |
---|
456 | //[3] Lorentzian screening length [A] |
---|
457 | //[4] peak location [1/A] |
---|
458 | //[5] Lorentzian exponent |
---|
459 | //[6] background |
---|
460 | |
---|
461 | // local variables |
---|
462 | Variable inten, qval |
---|
463 | // x is the q-value for the calculation |
---|
464 | qval = x |
---|
465 | // do the calculation and return the function value |
---|
466 | |
---|
467 | inten = aa/(qval)^nn + cc/(1 + (abs(qval-Qzero)*LL)^mm) + bgd |
---|
468 | |
---|
469 | Return (inten) |
---|
470 | |
---|
471 | End |
---|
472 | |
---|
473 | |
---|
474 | |
---|
475 | Function SetDeltaQ(folderStr,type) |
---|
476 | String folderStr,type |
---|
477 | |
---|
478 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + folderStr + ":det_"+type) // 2D detector data |
---|
479 | |
---|
480 | Variable xDim,yDim,delQ |
---|
481 | |
---|
482 | xDim=DimSize(inten,0) |
---|
483 | yDim=DimSize(inten,1) |
---|
484 | |
---|
485 | if(xDim<yDim) |
---|
486 | WAVE qx = $("root:Packages:NIST:VSANS:VCALC:" + folderStr + ":qx_"+type) |
---|
487 | delQ = abs(qx[0][0] - qx[1][0])/2 |
---|
488 | else |
---|
489 | WAVE qy = $("root:Packages:NIST:VSANS:VCALC:" + folderStr + ":qy_"+type) |
---|
490 | delQ = abs(qy[0][1] - qy[0][0])/2 |
---|
491 | endif |
---|
492 | |
---|
493 | // set the global |
---|
494 | Variable/G $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_"+type) = delQ |
---|
495 | // Print "SET delQ = ",delQ," for ",type |
---|
496 | |
---|
497 | return(0) |
---|
498 | end |
---|
499 | |
---|
500 | |
---|
501 | //TODO -- need a switch here to dispatch to the averaging type |
---|
502 | Proc V_BinQxQy_to_1D(folderStr,type) |
---|
503 | String folderStr |
---|
504 | String type |
---|
505 | // Prompt folderStr,"Pick the data folder containing 2D data",popup,getAList(4) |
---|
506 | // Prompt type,"detector identifier" |
---|
507 | |
---|
508 | |
---|
509 | V_fDoBinning_QxQy2D(folderStr, type) |
---|
510 | |
---|
511 | |
---|
512 | /// this is for a tall, narrow slit mode |
---|
513 | // V_fBinDetector_byRows(folderStr,type) |
---|
514 | |
---|
515 | End |
---|
516 | |
---|
517 | |
---|
518 | Proc V_Graph_1D_detType(folderStr,type) |
---|
519 | String folderStr,type |
---|
520 | |
---|
521 | SetDataFolder root:Packages:NIST:VSANS:VCALC |
---|
522 | |
---|
523 | Display $("iBin_qxqy"+"_"+type) vs $("qBin_qxqy"+"_"+type) |
---|
524 | ModifyGraph mirror=2,grid=1,log=1 |
---|
525 | ModifyGraph mode=4,marker=19,msize=2 |
---|
526 | // ErrorBars/T=0 iBin_qxqy Y,wave=(eBin2D_qxqy,eBin2D_qxqy) // for simulations, I don't have 2D uncertainty |
---|
527 | ErrorBars/T=0 $("iBin_qxqy"+"_"+type) Y,wave=($("eBin_qxqy"+"_"+type),$("eBin_qxqy"+"_"+type)) |
---|
528 | legend |
---|
529 | |
---|
530 | SetDataFolder root: |
---|
531 | |
---|
532 | End |
---|
533 | |
---|
534 | |
---|
535 | |
---|
536 | ////////// |
---|
537 | // |
---|
538 | // Function that bins a 2D detctor panel into I(q) based on the q-value of the pixel |
---|
539 | // - each pixel QxQyQz has been calculated beforehand |
---|
540 | // - if multiple panels are selected to be combined, it is done here during the binning |
---|
541 | // - the setting of deltaQ step is still a little suspect (TODO) |
---|
542 | // |
---|
543 | // |
---|
544 | // see the equivalent function in PlotUtils2D_v40.ipf |
---|
545 | // |
---|
546 | //Function fDoBinning_QxQy2D(inten,qx,qy,qz) |
---|
547 | // |
---|
548 | // this has been modified to accept different detector panels and to take arrays |
---|
549 | // -- type = FL or FR or...other panel identifiers |
---|
550 | // |
---|
551 | // TODO "iErr" is not always defined correctly since it doesn't really apply here for data that is not 2D simulation |
---|
552 | // |
---|
553 | Function V_fDoBinning_QxQy2D(folderStr,type) |
---|
554 | String folderStr,type |
---|
555 | |
---|
556 | Variable nSets = 0 |
---|
557 | Variable xDim,yDim |
---|
558 | Variable ii,jj |
---|
559 | Variable qVal,nq,var,avesq,aveisq |
---|
560 | Variable binIndex,val |
---|
561 | |
---|
562 | |
---|
563 | SetDataFolder root:Packages:NIST:VSANS:VCALC |
---|
564 | |
---|
565 | // now switch on the type to determine which waves to declare and create |
---|
566 | // since there may be more than one panel to step through. There may be two, there may be four |
---|
567 | // |
---|
568 | |
---|
569 | strswitch(type) // string switch |
---|
570 | case "FL": // execute if case matches expression |
---|
571 | case "FR": |
---|
572 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_FL") |
---|
573 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+type) // 2D detector data |
---|
574 | WAVE/Z iErr = $("iErr_"+type) // 2D errors -- may not exist, especially for simulation |
---|
575 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+type) // 2D q-values |
---|
576 | nSets = 1 |
---|
577 | break |
---|
578 | |
---|
579 | case "FT": |
---|
580 | case "FB": |
---|
581 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_FT") |
---|
582 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+type) // 2D detector data |
---|
583 | WAVE/Z iErr = $("iErr_"+type) // 2D errors -- may not exist, especially for simulation |
---|
584 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+type) // 2D q-values |
---|
585 | nSets = 1 |
---|
586 | break |
---|
587 | |
---|
588 | case "ML": |
---|
589 | case "MR": |
---|
590 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_ML") |
---|
591 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+type) // 2D detector data |
---|
592 | WAVE/Z iErr = $("iErr_"+type) // 2D errors -- may not exist, especially for simulation |
---|
593 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+type) // 2D q-values |
---|
594 | nSets = 1 |
---|
595 | break |
---|
596 | |
---|
597 | case "MT": |
---|
598 | case "MB": |
---|
599 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_MT") |
---|
600 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+type) // 2D detector data |
---|
601 | WAVE/Z iErr = $("iErr_"+type) // 2D errors -- may not exist, especially for simulation |
---|
602 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+type) // 2D q-values |
---|
603 | nSets = 1 |
---|
604 | break |
---|
605 | |
---|
606 | case "B": |
---|
607 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_B") |
---|
608 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Back" + ":det_"+type) // 2D detector data |
---|
609 | WAVE/Z iErr = $("iErr_"+type) // 2D errors -- may not exist, especially for simulation |
---|
610 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Back" +":qTot_"+type) // 2D q-values |
---|
611 | nSets = 1 |
---|
612 | break |
---|
613 | |
---|
614 | case "FLR": |
---|
615 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_FL") |
---|
616 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FL") // 2D detector data |
---|
617 | WAVE/Z iErr = $("iErr_"+"FL") // 2D errors -- may not exist, especially for simulation |
---|
618 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FL") // 2D q-values |
---|
619 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FR") // 2D detector data |
---|
620 | WAVE/Z iErr2 = $("iErr_"+"FR") // 2D errors -- may not exist, especially for simulation |
---|
621 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FR") // 2D q-values |
---|
622 | nSets = 2 |
---|
623 | break |
---|
624 | |
---|
625 | case "FTB": |
---|
626 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_FT") |
---|
627 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FT") // 2D detector data |
---|
628 | WAVE/Z iErr = $("iErr_"+"FT") // 2D errors -- may not exist, especially for simulation |
---|
629 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FT") // 2D q-values |
---|
630 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FB") // 2D detector data |
---|
631 | WAVE/Z iErr2 = $("iErr_"+"FB") // 2D errors -- may not exist, especially for simulation |
---|
632 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FB") // 2D q-values |
---|
633 | nSets = 2 |
---|
634 | break |
---|
635 | |
---|
636 | case "FLRTB": |
---|
637 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_FL") |
---|
638 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FL") // 2D detector data |
---|
639 | WAVE/Z iErr = $("iErr_"+"FL") // 2D errors -- may not exist, especially for simulation |
---|
640 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FL") // 2D q-values |
---|
641 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FR") // 2D detector data |
---|
642 | WAVE/Z iErr2 = $("iErr_"+"FR") // 2D errors -- may not exist, especially for simulation |
---|
643 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FR") // 2D q-values |
---|
644 | WAVE inten3 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FT") // 2D detector data |
---|
645 | WAVE/Z iErr3 = $("iErr_"+"FT") // 2D errors -- may not exist, especially for simulation |
---|
646 | Wave qTotal3 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FT") // 2D q-values |
---|
647 | WAVE inten4 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" + ":det_"+"FB") // 2D detector data |
---|
648 | WAVE/Z iErr4 = $("iErr_"+"FB") // 2D errors -- may not exist, especially for simulation |
---|
649 | Wave qTotal4 = $("root:Packages:NIST:VSANS:VCALC:" + "Front" +":qTot_"+"FB") // 2D q-values |
---|
650 | nSets = 4 |
---|
651 | break |
---|
652 | |
---|
653 | |
---|
654 | case "MLR": |
---|
655 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_ML") |
---|
656 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"ML") // 2D detector data |
---|
657 | WAVE/Z iErr = $("iErr_"+"ML") // 2D errors -- may not exist, especially for simulation |
---|
658 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"ML") // 2D q-values |
---|
659 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MR") // 2D detector data |
---|
660 | WAVE/Z iErr2 = $("iErr_"+"MR") // 2D errors -- may not exist, especially for simulation |
---|
661 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MR") // 2D q-values |
---|
662 | nSets = 2 |
---|
663 | break |
---|
664 | |
---|
665 | case "MTB": |
---|
666 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_MT") |
---|
667 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MT") // 2D detector data |
---|
668 | WAVE/Z iErr = $("iErr_"+"MT") // 2D errors -- may not exist, especially for simulation |
---|
669 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MT") // 2D q-values |
---|
670 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MB") // 2D detector data |
---|
671 | WAVE/Z iErr2 = $("iErr_"+"MB") // 2D errors -- may not exist, especially for simulation |
---|
672 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MB") // 2D q-values |
---|
673 | nSets = 2 |
---|
674 | break |
---|
675 | |
---|
676 | case "MLRTB": |
---|
677 | NVAR delQ = $("root:Packages:NIST:VSANS:VCALC:" + "gDelQ_ML") |
---|
678 | WAVE inten = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"ML") // 2D detector data |
---|
679 | WAVE/Z iErr = $("iErr_"+"ML") // 2D errors -- may not exist, especially for simulation |
---|
680 | Wave qTotal = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"ML") // 2D q-values |
---|
681 | WAVE inten2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MR") // 2D detector data |
---|
682 | WAVE/Z iErr2 = $("iErr_"+"MR") // 2D errors -- may not exist, especially for simulation |
---|
683 | Wave qTotal2 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MR") // 2D q-values |
---|
684 | WAVE inten3 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MT") // 2D detector data |
---|
685 | WAVE/Z iErr3 = $("iErr_"+"MT") // 2D errors -- may not exist, especially for simulation |
---|
686 | Wave qTotal3 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MT") // 2D q-values |
---|
687 | WAVE inten4 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" + ":det_"+"MB") // 2D detector data |
---|
688 | WAVE/Z iErr4 = $("iErr_"+"MB") // 2D errors -- may not exist, especially for simulation |
---|
689 | Wave qTotal4 = $("root:Packages:NIST:VSANS:VCALC:" + "Middle" +":qTot_"+"MB") // 2D q-values |
---|
690 | nSets = 4 |
---|
691 | break |
---|
692 | |
---|
693 | default: |
---|
694 | nSets = 0 // optional default expression executed |
---|
695 | Print "ERROR ---- type is not recognized " |
---|
696 | endswitch |
---|
697 | |
---|
698 | // Print "delQ = ",delQ," for ",type |
---|
699 | |
---|
700 | if(nSets == 0) |
---|
701 | return(0) |
---|
702 | endif |
---|
703 | |
---|
704 | |
---|
705 | //TODO: properly define the errors here - I'll have this if I do the simulation |
---|
706 | if(WaveExists(iErr)==0 && WaveExists(inten) != 0) |
---|
707 | Duplicate/O inten,iErr |
---|
708 | Wave iErr=iErr |
---|
709 | // iErr = 1+sqrt(inten+0.75) // can't use this -- it applies to counts, not intensity (already a count rate...) |
---|
710 | iErr = sqrt(inten+0.75) // TODO -- here I'm just using some fictional value |
---|
711 | endif |
---|
712 | if(WaveExists(iErr2)==0 && WaveExists(inten2) != 0) |
---|
713 | Duplicate/O inten2,iErr2 |
---|
714 | Wave iErr2=iErr2 |
---|
715 | // iErr2 = 1+sqrt(inten2+0.75) // can't use this -- it applies to counts, not intensity (already a count rate...) |
---|
716 | iErr2 = sqrt(inten2+0.75) // TODO -- here I'm just using some fictional value |
---|
717 | endif |
---|
718 | if(WaveExists(iErr3)==0 && WaveExists(inten3) != 0) |
---|
719 | Duplicate/O inten3,iErr3 |
---|
720 | Wave iErr3=iErr3 |
---|
721 | // iErr3 = 1+sqrt(inten3+0.75) // can't use this -- it applies to counts, not intensity (already a count rate...) |
---|
722 | iErr3 = sqrt(inten3+0.75) // TODO -- here I'm just using some fictional value |
---|
723 | endif |
---|
724 | if(WaveExists(iErr4)==0 && WaveExists(inten4) != 0) |
---|
725 | Duplicate/O inten4,iErr4 |
---|
726 | Wave iErr4=iErr4 |
---|
727 | // iErr4 = 1+sqrt(inten4+0.75) // can't use this -- it applies to counts, not intensity (already a count rate...) |
---|
728 | iErr4 = sqrt(inten4+0.75) // TODO -- here I'm just using some fictional value |
---|
729 | endif |
---|
730 | |
---|
731 | nq = 600 |
---|
732 | |
---|
733 | // note that the back panel of 320x320 (1mm res) results in 447 data points! |
---|
734 | // - so I upped nq to 600 |
---|
735 | |
---|
736 | //******TODO****** -- where to put the averaged data -- right now, folderStr is forced to "" |
---|
737 | // SetDataFolder $("root:"+folderStr) //should already be here, but make sure... |
---|
738 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"iBin_qxqy"+"_"+type) |
---|
739 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"qBin_qxqy"+"_"+type) |
---|
740 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"nBin_qxqy"+"_"+type) |
---|
741 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"iBin2_qxqy"+"_"+type) |
---|
742 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"eBin_qxqy"+"_"+type) |
---|
743 | Make/O/D/N=(nq) $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"eBin2D_qxqy"+"_"+type) |
---|
744 | |
---|
745 | Wave iBin_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"iBin_qxqy_"+type) |
---|
746 | Wave qBin_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"qBin_qxqy"+"_"+type) |
---|
747 | Wave nBin_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"nBin_qxqy"+"_"+type) |
---|
748 | Wave iBin2_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"iBin2_qxqy"+"_"+type) |
---|
749 | Wave eBin_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"eBin_qxqy"+"_"+type) |
---|
750 | Wave eBin2D_qxqy = $("root:Packages:NIST:VSANS:VCALC:"+folderStr+"eBin2D_qxqy"+"_"+type) |
---|
751 | |
---|
752 | |
---|
753 | // delQ = abs(sqrt(qx[2]^2+qy[2]^2+qz[2]^2) - sqrt(qx[1]^2+qy[1]^2+qz[1]^2)) //use bins of 1 pixel width |
---|
754 | // TODO: not sure if I want to set dQ in x or y direction... |
---|
755 | // the short dimension is the 8mm tubes, use this direction as dQ? |
---|
756 | // but don't use the corner of the detector, since dQ will be very different on T/B or L/R due to the location of [0,0] |
---|
757 | // WRT the beam center. use qx or qy directly. Still not happy with this way... |
---|
758 | |
---|
759 | |
---|
760 | qBin_qxqy[] = p*delQ |
---|
761 | SetScale/P x,0,delQ,"",qBin_qxqy //allows easy binning |
---|
762 | |
---|
763 | iBin_qxqy = 0 |
---|
764 | iBin2_qxqy = 0 |
---|
765 | eBin_qxqy = 0 |
---|
766 | eBin2D_qxqy = 0 |
---|
767 | nBin_qxqy = 0 //number of intensities added to each bin |
---|
768 | |
---|
769 | // now there are situations of: |
---|
770 | // 1 panel |
---|
771 | // 2 panels |
---|
772 | // 4 panels |
---|
773 | // |
---|
774 | // this needs to be a double loop now... |
---|
775 | |
---|
776 | // use set 1 (no number) only |
---|
777 | if(nSets >= 1) |
---|
778 | xDim=DimSize(inten,0) |
---|
779 | yDim=DimSize(inten,1) |
---|
780 | |
---|
781 | for(ii=0;ii<xDim;ii+=1) |
---|
782 | for(jj=0;jj<yDim;jj+=1) |
---|
783 | //qTot = sqrt(qx[ii]^2 + qy[ii]^2+ qz[ii]^2) |
---|
784 | qVal = qTotal[ii][jj] |
---|
785 | binIndex = trunc(x2pnt(qBin_qxqy, qVal)) |
---|
786 | val = inten[ii][jj] |
---|
787 | if (numType(val)==0) //count only the good points, ignore Nan or Inf |
---|
788 | iBin_qxqy[binIndex] += val |
---|
789 | iBin2_qxqy[binIndex] += val*val |
---|
790 | eBin2D_qxqy[binIndex] += iErr[ii][jj]*iErr[ii][jj] |
---|
791 | nBin_qxqy[binIndex] += 1 |
---|
792 | endif |
---|
793 | endfor |
---|
794 | endfor |
---|
795 | |
---|
796 | endif |
---|
797 | |
---|
798 | // add in set 2 (set 1 already done) |
---|
799 | if(nSets >= 2) |
---|
800 | xDim=DimSize(inten2,0) |
---|
801 | yDim=DimSize(inten2,1) |
---|
802 | |
---|
803 | for(ii=0;ii<xDim;ii+=1) |
---|
804 | for(jj=0;jj<yDim;jj+=1) |
---|
805 | //qTot = sqrt(qx[ii]^2 + qy[ii]^2+ qz[ii]^2) |
---|
806 | qVal = qTotal2[ii][jj] |
---|
807 | binIndex = trunc(x2pnt(qBin_qxqy, qVal)) |
---|
808 | val = inten2[ii][jj] |
---|
809 | if (numType(val)==0) //count only the good points, ignore Nan or Inf |
---|
810 | iBin_qxqy[binIndex] += val |
---|
811 | iBin2_qxqy[binIndex] += val*val |
---|
812 | eBin2D_qxqy[binIndex] += iErr2[ii][jj]*iErr2[ii][jj] |
---|
813 | nBin_qxqy[binIndex] += 1 |
---|
814 | endif |
---|
815 | endfor |
---|
816 | endfor |
---|
817 | |
---|
818 | endif |
---|
819 | |
---|
820 | // add in set 3 and 4 (set 1 and 2already done) |
---|
821 | if(nSets == 4) |
---|
822 | xDim=DimSize(inten3,0) |
---|
823 | yDim=DimSize(inten3,1) |
---|
824 | |
---|
825 | for(ii=0;ii<xDim;ii+=1) |
---|
826 | for(jj=0;jj<yDim;jj+=1) |
---|
827 | //qTot = sqrt(qx[ii]^2 + qy[ii]^2+ qz[ii]^2) |
---|
828 | qVal = qTotal3[ii][jj] |
---|
829 | binIndex = trunc(x2pnt(qBin_qxqy, qVal)) |
---|
830 | val = inten3[ii][jj] |
---|
831 | if (numType(val)==0) //count only the good points, ignore Nan or Inf |
---|
832 | iBin_qxqy[binIndex] += val |
---|
833 | iBin2_qxqy[binIndex] += val*val |
---|
834 | eBin2D_qxqy[binIndex] += iErr3[ii][jj]*iErr3[ii][jj] |
---|
835 | nBin_qxqy[binIndex] += 1 |
---|
836 | endif |
---|
837 | endfor |
---|
838 | endfor |
---|
839 | |
---|
840 | |
---|
841 | xDim=DimSize(inten4,0) |
---|
842 | yDim=DimSize(inten4,1) |
---|
843 | |
---|
844 | for(ii=0;ii<xDim;ii+=1) |
---|
845 | for(jj=0;jj<yDim;jj+=1) |
---|
846 | //qTot = sqrt(qx[ii]^2 + qy[ii]^2+ qz[ii]^2) |
---|
847 | qVal = qTotal4[ii][jj] |
---|
848 | binIndex = trunc(x2pnt(qBin_qxqy, qVal)) |
---|
849 | val = inten4[ii][jj] |
---|
850 | if (numType(val)==0) //count only the good points, ignore Nan or Inf |
---|
851 | iBin_qxqy[binIndex] += val |
---|
852 | iBin2_qxqy[binIndex] += val*val |
---|
853 | eBin2D_qxqy[binIndex] += iErr4[ii][jj]*iErr4[ii][jj] |
---|
854 | nBin_qxqy[binIndex] += 1 |
---|
855 | endif |
---|
856 | endfor |
---|
857 | endfor |
---|
858 | |
---|
859 | endif |
---|
860 | |
---|
861 | |
---|
862 | // after looping through all of the data on the panels, calculate errors on I(q), |
---|
863 | // just like in CircSectAve.ipf |
---|
864 | for(ii=0;ii<nq;ii+=1) |
---|
865 | if(nBin_qxqy[ii] == 0) |
---|
866 | //no pixels in annuli, data unknown |
---|
867 | iBin_qxqy[ii] = 0 |
---|
868 | eBin_qxqy[ii] = 1 |
---|
869 | eBin2D_qxqy[ii] = NaN |
---|
870 | else |
---|
871 | if(nBin_qxqy[ii] <= 1) |
---|
872 | //need more than one pixel to determine error |
---|
873 | iBin_qxqy[ii] /= nBin_qxqy[ii] |
---|
874 | eBin_qxqy[ii] = 1 |
---|
875 | eBin2D_qxqy[ii] /= (nBin_qxqy[ii])^2 |
---|
876 | else |
---|
877 | //assume that the intensity in each pixel in annuli is normally distributed about mean... |
---|
878 | iBin_qxqy[ii] /= nBin_qxqy[ii] |
---|
879 | avesq = iBin_qxqy[ii]^2 |
---|
880 | aveisq = iBin2_qxqy[ii]/nBin_qxqy[ii] |
---|
881 | var = aveisq-avesq |
---|
882 | if(var<=0) |
---|
883 | eBin_qxqy[ii] = 1e-6 |
---|
884 | else |
---|
885 | eBin_qxqy[ii] = sqrt(var/(nBin_qxqy[ii] - 1)) |
---|
886 | endif |
---|
887 | // and calculate as it is propagated pixel-by-pixel |
---|
888 | eBin2D_qxqy[ii] /= (nBin_qxqy[ii])^2 |
---|
889 | endif |
---|
890 | endif |
---|
891 | endfor |
---|
892 | |
---|
893 | eBin2D_qxqy = sqrt(eBin2D_qxqy) // as equation (3) of John's memo |
---|
894 | |
---|
895 | // find the last non-zero point, working backwards |
---|
896 | val=nq |
---|
897 | do |
---|
898 | val -= 1 |
---|
899 | while((nBin_qxqy[val] == 0) && val > 0) |
---|
900 | |
---|
901 | // print val, nBin_qxqy[val] |
---|
902 | DeletePoints val, nq-val, iBin_qxqy,qBin_qxqy,nBin_qxqy,iBin2_qxqy,eBin_qxqy,eBin2D_qxqy |
---|
903 | |
---|
904 | if(val == 0) |
---|
905 | // all the points were deleted |
---|
906 | return(0) |
---|
907 | endif |
---|
908 | |
---|
909 | |
---|
910 | // since the beam center is not always on the detector, many of the low Q bins will have zero pixels |
---|
911 | // find the first non-zero point, working forwards |
---|
912 | val = -1 |
---|
913 | do |
---|
914 | val += 1 |
---|
915 | while(nBin_qxqy[val] == 0) |
---|
916 | DeletePoints 0, val, iBin_qxqy,qBin_qxqy,nBin_qxqy,iBin2_qxqy,eBin_qxqy,eBin2D_qxqy |
---|
917 | |
---|
918 | // ?? there still may be a point in the q-range that gets zero pixel contribution - so search this out and get rid of it |
---|
919 | val = numpnts(nBin_qxqy)-1 |
---|
920 | do |
---|
921 | if(nBin_qxqy[val] == 0) |
---|
922 | DeletePoints val, 1, iBin_qxqy,qBin_qxqy,nBin_qxqy,iBin2_qxqy,eBin_qxqy,eBin2D_qxqy |
---|
923 | endif |
---|
924 | val -= 1 |
---|
925 | while(val>0) |
---|
926 | |
---|
927 | SetDataFolder root: |
---|
928 | |
---|
929 | return(0) |
---|
930 | End |
---|
931 | |
---|
932 | |
---|