1 | #pragma rtGlobals=3 // Use modern global access method and strict wave access. |
---|
2 | #pragma version=1.0 |
---|
3 | #pragma IgorVersion = 7.00 |
---|
4 | |
---|
5 | |
---|
6 | |
---|
7 | // |
---|
8 | // functions to apply corrections to the detector panels |
---|
9 | // |
---|
10 | // these are meant to be called by the procedures that convert "raw" data to |
---|
11 | // "adjusted" or corrected data sets |
---|
12 | // |
---|
13 | |
---|
14 | //////////////// |
---|
15 | // Constants for detector efficiency and shadowing |
---|
16 | // |
---|
17 | // V_TubeEfficiencyShadowCorr() |
---|
18 | // |
---|
19 | // JAN 2020 |
---|
20 | /////////////// |
---|
21 | Constant kTube_ri = 0.372 // inner radius of tube [cm] |
---|
22 | Constant kTube_cc = 0.84 // center to center spacing [cm] |
---|
23 | Constant kTube_ss = 0.025 // stainless steel shell thickness [cm] |
---|
24 | |
---|
25 | Constant kSig_2b_He = 0.146 // abs xs for 2 bar He(3) [cm-1 A-1] (multiply this by wavelength) |
---|
26 | Constant kSig_8b_He = 0.593 // abs xs for 8 bar He(3) [cm-1 A-1] (multiply this by wavelength) |
---|
27 | Constant kSig_Al = 0.00967 // abs xs for Al [cm-1 A-1] (multiply this by wavelength) |
---|
28 | Constant kSig_ss = 0.146 // abs xs for 304 SS [cm-1 A-1] (multiply this by wavelength) |
---|
29 | |
---|
30 | |
---|
31 | |
---|
32 | |
---|
33 | // |
---|
34 | // detector dead time |
---|
35 | // |
---|
36 | // input is the data array (N tubes x M pixels) |
---|
37 | // input of N x 1 array of dead time values |
---|
38 | // |
---|
39 | // output is the corrected counts in data, overwriting the input data |
---|
40 | // |
---|
41 | // Note that the equation in Roe (eqn 2.15, p. 63) looks different, but it is really the |
---|
42 | // same old equation, just written in a more complex form. |
---|
43 | // |
---|
44 | // (DONE) |
---|
45 | // x- verify the direction of the tubes and indexing |
---|
46 | // x- decide on the appropriate functional form for the tubes |
---|
47 | // x- need count time as input |
---|
48 | // x- be sure I'm working in the right data folder (all waves are passed in) |
---|
49 | // x- clean up when done |
---|
50 | // x- calculate + return the error contribution? |
---|
51 | // x- verify the error propagation |
---|
52 | Function V_DeadTimeCorrectionTubes(dataW,data_errW,dtW,ctTime) |
---|
53 | Wave dataW,data_errW,dtW |
---|
54 | Variable ctTime |
---|
55 | |
---|
56 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
57 | String orientation |
---|
58 | Variable dimX,dimY |
---|
59 | dimX = DimSize(dataW,0) |
---|
60 | dimY = DimSize(dataw,1) |
---|
61 | if(dimX > dimY) |
---|
62 | orientation = "horizontal" |
---|
63 | else |
---|
64 | orientation = "vertical" |
---|
65 | endif |
---|
66 | |
---|
67 | // sum the counts in each tube and divide by time for total cr per tube |
---|
68 | Variable npt |
---|
69 | |
---|
70 | if(cmpstr(orientation,"vertical")==0) |
---|
71 | // this is data dimensioned as (Ntubes,Npix) |
---|
72 | |
---|
73 | MatrixOp/O sumTubes = sumRows(dataW) // n x 1 result |
---|
74 | sumTubes /= ctTime //now count rate per tube |
---|
75 | |
---|
76 | dataW[][] = dataW[p][q]/(1-sumTubes[p]*dtW[p]) //correct the data |
---|
77 | data_errW[][] = data_errW[p][q]/(1-sumTubes[p]*dtW[p]) // propagate the error wave |
---|
78 | |
---|
79 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
80 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
81 | |
---|
82 | MatrixOp/O sumTubes = sumCols(dataW) // 1 x m result |
---|
83 | sumTubes /= ctTime |
---|
84 | |
---|
85 | dataW[][] = dataW[p][q]/(1-sumTubes[q]*dtW[q]) |
---|
86 | data_errW[][] = data_errW[p][q]/(1-sumTubes[q]*dtW[q]) |
---|
87 | |
---|
88 | else |
---|
89 | DoAlert 0,"Orientation not correctly passed in DeadTimeCorrectionTubes(). No correction done." |
---|
90 | endif |
---|
91 | |
---|
92 | return(0) |
---|
93 | end |
---|
94 | |
---|
95 | // test function |
---|
96 | Function V_testDTCor() |
---|
97 | |
---|
98 | String detStr = "" |
---|
99 | String fname = "RAW" |
---|
100 | Variable ctTime |
---|
101 | |
---|
102 | detStr = "FR" |
---|
103 | Wave w = V_getDetectorDataW(fname,detStr) |
---|
104 | Wave w_err = V_getDetectorDataErrW(fname,detStr) |
---|
105 | Wave w_dt = V_getDetector_deadtime(fname,detStr) |
---|
106 | |
---|
107 | ctTime = V_getCount_time(fname) |
---|
108 | |
---|
109 | // ctTime = 10 |
---|
110 | V_DeadTimeCorrectionTubes(w,w_err,w_dt,ctTime) |
---|
111 | |
---|
112 | End |
---|
113 | |
---|
114 | |
---|
115 | // |
---|
116 | // Non-linear data correction |
---|
117 | // |
---|
118 | // DOES NOT modify the data, only calculates the spatial relationship |
---|
119 | // |
---|
120 | // input is the data array (N tubes x M pixels) |
---|
121 | // input of N x M array of quadratic coefficients |
---|
122 | // |
---|
123 | // output is wave of corrected real space distance corresponding to each pixel of the data |
---|
124 | // ** its distance from the nominal beam center of (0,0) ** |
---|
125 | // |
---|
126 | // |
---|
127 | // (DONE) |
---|
128 | // x- UNITS!!!! currently this is mm, which certainly doesn't match anything else!!! |
---|
129 | // |
---|
130 | // x- verify the direction of the tubes and indexing |
---|
131 | // x- be sure I'm working in the right data folder (it is passed in, and the full path is used) |
---|
132 | // x- clean up when done |
---|
133 | // x- calculate + return the error contribution? (there is none for this operation) |
---|
134 | // x- do I want this to return a wave? (no, default names are generated) |
---|
135 | // x- do I need to write a separate function that returns the distance wave for later calculations? |
---|
136 | // x- do I want to make the distance array 3D to keep the x and y dims together? Calculate them all right now? |
---|
137 | // x- what else do I need to pass to the function? (fname=folder? detStr?) |
---|
138 | // y- (yes,see below) need a separate block or function to handle "B" detector which will be ? different |
---|
139 | // |
---|
140 | // |
---|
141 | Function V_NonLinearCorrection(fname,dataW,coefW,tube_width,detStr,destPath) |
---|
142 | String fname //can also be a folder such as "RAW" |
---|
143 | Wave dataW,coefW |
---|
144 | Variable tube_width |
---|
145 | String detStr,destPath |
---|
146 | |
---|
147 | |
---|
148 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
149 | String orientation |
---|
150 | Variable dimX,dimY |
---|
151 | dimX = DimSize(dataW,0) |
---|
152 | dimY = DimSize(dataW,1) |
---|
153 | if(dimX > dimY) |
---|
154 | orientation = "horizontal" |
---|
155 | else |
---|
156 | orientation = "vertical" |
---|
157 | endif |
---|
158 | |
---|
159 | // make a wave of the same dimensions, in the same data folder for the distance |
---|
160 | // ?? or a 3D wave? |
---|
161 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
162 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
163 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
164 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
165 | |
---|
166 | // then per tube, do the quadratic calculation to get the real space distance along the tube |
---|
167 | // the distance perpendicular to the tube is n*(8.4mm) per tube index |
---|
168 | |
---|
169 | // DONE |
---|
170 | // -- GAP was hard-wired, but in 2018 proper values for all 4 gaps were measured |
---|
171 | // and added to the file header for each detector panel. there is now a read from the |
---|
172 | // header to get the gap value |
---|
173 | Variable offset,gap |
---|
174 | |
---|
175 | gap = V_getDet_panel_gap(fname,detStr) |
---|
176 | |
---|
177 | // DONE: |
---|
178 | // -- in case of error, V_getDet_panel_gap() will return -999999 |
---|
179 | // -- it should only apply to data pre-2018 when the field did not exist in the file |
---|
180 | // -- any VSANS data from 2018+ should read gap from the file and bypass the if() |
---|
181 | |
---|
182 | if(gap < -100) //-999999 returned if field is missing from file |
---|
183 | |
---|
184 | if(cmpstr(detStr,"FL") == 0 || cmpstr(detStr,"FR") == 0) |
---|
185 | gap = 3.5 //mm (measured, JB 1/4/18) |
---|
186 | endif |
---|
187 | if(cmpstr(detStr,"FT") == 0 || cmpstr(detStr,"FB") == 0) |
---|
188 | gap = 3.3 //mm (measured, JB 2/1/18) |
---|
189 | endif |
---|
190 | if(cmpstr(detStr,"ML") == 0 || cmpstr(detStr,"MR") == 0) |
---|
191 | gap = 5.9 //mm (measured, JB 1/4/18) |
---|
192 | endif |
---|
193 | if(cmpstr(detStr,"MT") == 0 || cmpstr(detStr,"MB") == 0) |
---|
194 | gap = 18.3 //mm (measured, JB 2/1/18) |
---|
195 | endif |
---|
196 | |
---|
197 | endif |
---|
198 | |
---|
199 | |
---|
200 | if(cmpstr(orientation,"vertical")==0) |
---|
201 | // this is data dimensioned as (Ntubes,Npix) |
---|
202 | |
---|
203 | // adjust the x postion based on the beam center being nominally (0,0) in units of cm, not pixels |
---|
204 | if(cmpstr(fname,"VCALC")== 0 ) |
---|
205 | offset = VCALC_getPanelTranslation(detStr) |
---|
206 | offset *= 10 // convert to units of mm |
---|
207 | // if(cmpstr("L",detStr[1]) == 0) |
---|
208 | // offset *= -1 //negative value for L |
---|
209 | // endif |
---|
210 | else |
---|
211 | //normal case |
---|
212 | offset = V_getDet_LateralOffset(fname,detStr) |
---|
213 | offset *= 10 //convert cm to mm |
---|
214 | endif |
---|
215 | |
---|
216 | // calculation is in mm, not cm |
---|
217 | // offset will be a negative value for the L panel, and positive for the R panel |
---|
218 | if(kBCTR_CM) |
---|
219 | if(cmpstr("L",detStr[1]) == 0) |
---|
220 | // data_realDistX[][] = offset - (dimX - p)*tube_width // TODO should this be dimX-1-p = 47-p? |
---|
221 | data_realDistX[][] = offset - (dimX - p - 1/2)*tube_width - gap/2 // TODO should this be dimX-1-p = 47-p? |
---|
222 | else |
---|
223 | // right |
---|
224 | // data_realDistX[][] = tube_width*(p+1) + offset + gap //add to the Right det, |
---|
225 | data_realDistX[][] = tube_width*(p+1/2) + offset + gap/2 //add to the Right det |
---|
226 | endif |
---|
227 | else |
---|
228 | data_realDistX[][] = tube_width*(p) |
---|
229 | endif |
---|
230 | data_realDistY[][] = coefW[0][p] + coefW[1][p]*q + coefW[2][p]*q*q |
---|
231 | |
---|
232 | |
---|
233 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
234 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
235 | data_realDistY[][] = tube_width*q |
---|
236 | |
---|
237 | if(cmpstr(fname,"VCALC")== 0 ) |
---|
238 | offset = VCALC_getPanelTranslation(detStr) |
---|
239 | offset *= 10 // convert to units of mm |
---|
240 | // if(cmpstr("B",detStr[1]) == 0) |
---|
241 | // offset *= -1 // negative value for Bottom det |
---|
242 | // endif |
---|
243 | else |
---|
244 | //normal case |
---|
245 | offset = V_getDet_VerticalOffset(fname,detStr) |
---|
246 | offset *= 10 //convert cm to mm |
---|
247 | endif |
---|
248 | |
---|
249 | if(kBCTR_CM) |
---|
250 | if(cmpstr("T",detStr[1]) == 0) |
---|
251 | // data_realDistY[][] = tube_width*(q+1) + offset + gap |
---|
252 | data_realDistY[][] = tube_width*(q+1/2) + offset + gap/2 |
---|
253 | else |
---|
254 | // bottom |
---|
255 | // data_realDistY[][] = offset - (dimY - q)*tube_width // TODO should this be dimY-1-q = 47-q? |
---|
256 | data_realDistY[][] = offset - (dimY - q - 1/2)*tube_width - gap/2 // TODO should this be dimY-1-q = 47-q? |
---|
257 | endif |
---|
258 | else |
---|
259 | data_realDistY[][] = tube_width*(q) |
---|
260 | endif |
---|
261 | data_realDistX[][] = coefW[0][q] + coefW[1][q]*p + coefW[2][q]*p*p |
---|
262 | |
---|
263 | else |
---|
264 | DoAlert 0,"Orientation not correctly passed in NonLinearCorrection(). No correction done." |
---|
265 | return(0) |
---|
266 | endif |
---|
267 | |
---|
268 | return(0) |
---|
269 | end |
---|
270 | |
---|
271 | |
---|
272 | |
---|
273 | |
---|
274 | // TODO: |
---|
275 | // -- the cal_x and y coefficients are totally fake |
---|
276 | // -- the wave assignment may not be correct.. so beware |
---|
277 | // |
---|
278 | // |
---|
279 | Function V_NonLinearCorrection_B(folder,dataW,cal_x,cal_y,detStr,destPath) |
---|
280 | String folder |
---|
281 | Wave dataW,cal_x,cal_y |
---|
282 | String detStr,destPath |
---|
283 | |
---|
284 | if(cmpstr(detStr,"B") != 0) |
---|
285 | return(0) |
---|
286 | endif |
---|
287 | |
---|
288 | Print "***Cal_X and Cal_Y for Back are using file values ***" |
---|
289 | |
---|
290 | // cal_x[0] = VCALC_getPixSizeX(detStr)*10 // pixel size in mm VCALC_getPixSizeX(detStr) is [cm] |
---|
291 | // cal_x[1] = 1 |
---|
292 | // cal_x[2] = 10000 |
---|
293 | // cal_y[0] = VCALC_getPixSizeY(detStr)*10 // pixel size in mm VCALC_getPixSizeX(detStr) is [cm] |
---|
294 | // cal_y[1] = 1 |
---|
295 | // cal_y[2] = 10000 |
---|
296 | |
---|
297 | |
---|
298 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
299 | Variable dimX,dimY |
---|
300 | |
---|
301 | // Wave dataW = V_getDetectorDataW(folder,detStr) |
---|
302 | |
---|
303 | dimX = DimSize(dataW,0) |
---|
304 | dimY = DimSize(dataW,1) |
---|
305 | |
---|
306 | // make a wave of the same dimensions, in the same data folder for the distance |
---|
307 | // ?? or a 3D wave? |
---|
308 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
309 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
310 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
311 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
312 | |
---|
313 | // Wave cal_x = V_getDet_cal_x(folder,detStr) |
---|
314 | // Wave cal_y = V_getDet_cal_y(folder,detStr) |
---|
315 | |
---|
316 | data_realDistX[][] = cal_x[0]*p*10 // cal_x and cal_y are in [cm], need mm |
---|
317 | data_realDistY[][] = cal_y[0]*q*10 |
---|
318 | |
---|
319 | return(0) |
---|
320 | end |
---|
321 | |
---|
322 | |
---|
323 | // |
---|
324 | // |
---|
325 | // TODO |
---|
326 | // -- VERIFY the calculations |
---|
327 | // -- verify where this needs to be done (if the beam center is changed) |
---|
328 | // -- then the q-calculation needs to be re-done |
---|
329 | // -- the position along the tube length is referenced to tube[0], for no particular reason |
---|
330 | // It may be better to take an average? but [0] is an ASSUMPTION |
---|
331 | // -- distance along tube is simple interpolation, or do I use the coefficients to |
---|
332 | // calculate the actual value |
---|
333 | // |
---|
334 | // -- distance in the lateral direction is based on tube width, which is a fixed parameter |
---|
335 | // |
---|
336 | // |
---|
337 | Function V_ConvertBeamCtrPix_to_mm(folder,detStr,destPath) |
---|
338 | String folder,detStr,destPath |
---|
339 | |
---|
340 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
341 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
342 | |
---|
343 | String orientation |
---|
344 | Variable dimX,dimY,xCtr,yCtr |
---|
345 | dimX = DimSize(data_realDistX,0) |
---|
346 | dimY = DimSize(data_realDistX,1) |
---|
347 | if(dimX > dimY) |
---|
348 | orientation = "horizontal" |
---|
349 | else |
---|
350 | orientation = "vertical" |
---|
351 | endif |
---|
352 | |
---|
353 | xCtr = V_getDet_beam_center_x(folder,detStr) |
---|
354 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
355 | |
---|
356 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
357 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
358 | WAVE x_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
359 | WAVE y_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
360 | |
---|
361 | Variable tube_width = V_getDet_tubeWidth(folder,detStr) //this is also in mm |
---|
362 | |
---|
363 | // |
---|
364 | strswitch(detStr) // string switch |
---|
365 | case "FL": |
---|
366 | case "ML": |
---|
367 | // for Left/Right |
---|
368 | // for left |
---|
369 | x_mm[0] = data_realDistX[dimX-1][0] + (xCtr-dimX-1)*tube_width |
---|
370 | y_mm[0] = data_realDistY[0][yCtr] |
---|
371 | |
---|
372 | break |
---|
373 | case "FR": |
---|
374 | case "MR": |
---|
375 | // for Left/Right |
---|
376 | // for right |
---|
377 | x_mm[0] = data_realDistX[0][0] + xCtr*tube_width |
---|
378 | y_mm[0] = data_realDistY[0][yCtr] |
---|
379 | |
---|
380 | break |
---|
381 | case "FT": |
---|
382 | case "MT": |
---|
383 | // for Top |
---|
384 | x_mm[0] = data_realDistX[xCtr][0] |
---|
385 | y_mm[0] = data_realDistY[0][0] + yCtr*tube_width |
---|
386 | |
---|
387 | break |
---|
388 | case "FB": |
---|
389 | case "MB": |
---|
390 | // for Bottom |
---|
391 | x_mm[0] = data_realDistX[xCtr][0] |
---|
392 | y_mm[0] = data_realDistY[0][dimY-1] + (yCtr-dimY-1)*tube_width |
---|
393 | |
---|
394 | break |
---|
395 | default: // optional default expression executed |
---|
396 | Print "No case matched in V_Convert_FittedPix_2_cm" |
---|
397 | return(1) |
---|
398 | endswitch |
---|
399 | |
---|
400 | return(0) |
---|
401 | end |
---|
402 | |
---|
403 | // |
---|
404 | // |
---|
405 | // (DONE) |
---|
406 | // x- VERIFY the calculations |
---|
407 | // x- verify where this needs to be done (if the beam center is changed) |
---|
408 | // x- then the q-calculation needs to be re-done |
---|
409 | // x- the position along the tube length is referenced to tube[0], for no particular reason |
---|
410 | // It may be better to take an average? but [0] is an ASSUMPTION |
---|
411 | // x- distance along tube is simple interpolation |
---|
412 | // |
---|
413 | // x- distance in the lateral direction is based on tube width, which is a fixed parameter |
---|
414 | // |
---|
415 | // the value in pixels is written to the local data folder, NOT to disk (it is recalculated as needed) |
---|
416 | // |
---|
417 | Function V_ConvertBeamCtr_to_pix(folder,detStr,destPath) |
---|
418 | String folder,detStr,destPath |
---|
419 | |
---|
420 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
421 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
422 | |
---|
423 | String orientation |
---|
424 | Variable dimX,dimY,xCtr,yCtr |
---|
425 | dimX = DimSize(data_realDistX,0) |
---|
426 | dimY = DimSize(data_realDistX,1) |
---|
427 | if(dimX > dimY) |
---|
428 | orientation = "horizontal" |
---|
429 | else |
---|
430 | orientation = "vertical" |
---|
431 | endif |
---|
432 | |
---|
433 | xCtr = V_getDet_beam_center_x(folder,detStr) //these are in cm |
---|
434 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
435 | |
---|
436 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
437 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
438 | WAVE x_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
439 | WAVE y_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
440 | |
---|
441 | Variable tube_width = V_getDet_tubeWidth(folder,detStr) |
---|
442 | |
---|
443 | variable edge,delta |
---|
444 | Variable gap |
---|
445 | |
---|
446 | // the gap is split equally between the panel pairs |
---|
447 | // DONE -- replace hard-wired values with V_getDet_panel_gap(fname,detStr) once it is added to the file |
---|
448 | |
---|
449 | gap = V_getDet_panel_gap(folder,detStr) |
---|
450 | |
---|
451 | // DONE: |
---|
452 | // -- check in case of error, value should be read from header |
---|
453 | // -- it should only apply to data pre-2018 when the field did not exist in the file |
---|
454 | // -- any VSANS data from 2018+ should read gap from the file. |
---|
455 | |
---|
456 | if(gap < -100) //-999999 returned if field is missing from file |
---|
457 | if(cmpstr(detStr,"FL") == 0 || cmpstr(detStr,"FR") == 0) |
---|
458 | gap = 3.5 //mm (measured, JB 1/4/18) |
---|
459 | endif |
---|
460 | if(cmpstr(detStr,"FT") == 0 || cmpstr(detStr,"FB") == 0) |
---|
461 | gap = 3.3 //mm (measured, JB 2/1/18) |
---|
462 | endif |
---|
463 | if(cmpstr(detStr,"ML") == 0 || cmpstr(detStr,"MR") == 0) |
---|
464 | gap = 5.9 //mm (measured, JB 1/4/18) |
---|
465 | endif |
---|
466 | if(cmpstr(detStr,"MT") == 0 || cmpstr(detStr,"MB") == 0) |
---|
467 | gap = 18.3 //mm (measured, JB 2/1/18) |
---|
468 | endif |
---|
469 | endif |
---|
470 | |
---|
471 | // |
---|
472 | if(cmpstr(orientation,"vertical")==0) |
---|
473 | // this is data dimensioned as (Ntubes,Npix) |
---|
474 | |
---|
475 | if(kBCTR_CM) |
---|
476 | if(cmpstr("L",detStr[1]) == 0) |
---|
477 | Make/O/D/N=(dimX) tmpTube |
---|
478 | tmpTube = data_RealDistX[p][0] |
---|
479 | FindLevel/P/Q tmpTube xCtr*10 |
---|
480 | if(V_Flag) |
---|
481 | edge = data_realDistX[47][0] //tube 47 |
---|
482 | delta = abs(xCtr*10 - edge) |
---|
483 | x_pix[0] = dimX-1 + delta/tube_width |
---|
484 | else |
---|
485 | // beam center is on the panel, report the pixel value |
---|
486 | x_pix[0] = V_LevelX |
---|
487 | endif |
---|
488 | |
---|
489 | else |
---|
490 | // R panel |
---|
491 | Make/O/D/N=(dimX) tmpTube |
---|
492 | tmpTube = data_RealDistX[p][0] |
---|
493 | FindLevel/P/Q tmpTube xCtr*10 |
---|
494 | if(V_Flag) |
---|
495 | //level not found |
---|
496 | edge = data_realDistX[0][0] |
---|
497 | delta = abs(xCtr*10 - edge + gap) // how far past the edge of the panel |
---|
498 | x_pix[0] = -delta/tube_width //since the left edge of the R panel is pixel 0 |
---|
499 | else |
---|
500 | // beam center is on the panel, report the pixel value |
---|
501 | x_pix[0] = V_LevelX |
---|
502 | endif |
---|
503 | |
---|
504 | endif |
---|
505 | |
---|
506 | endif |
---|
507 | |
---|
508 | // the y-center will be on the panel in this direction |
---|
509 | Make/O/D/N=(dimY) tmpTube |
---|
510 | tmpTube = data_RealDistY[0][p] |
---|
511 | FindLevel /P/Q tmpTube, yCtr*10 |
---|
512 | |
---|
513 | y_pix[0] = V_levelX |
---|
514 | KillWaves/Z tmpTube |
---|
515 | // Print x_pix[0],y_pix[0] |
---|
516 | |
---|
517 | else |
---|
518 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
519 | |
---|
520 | if(kBCTR_CM) |
---|
521 | if(cmpstr("T",detStr[1]) == 0) |
---|
522 | Make/O/D/N=(dimY) tmpTube |
---|
523 | tmpTube = data_RealDistY[p][0] |
---|
524 | FindLevel/P/Q tmpTube yCtr*10 |
---|
525 | if(V_Flag) |
---|
526 | edge = data_realDistY[0][0] //tube 0 |
---|
527 | delta = abs(yCtr*10 - edge + gap) |
---|
528 | y_pix[0] = -delta/tube_width //since the bottom edge of the T panel is pixel 0 |
---|
529 | else |
---|
530 | y_pix[0] = V_LevelX |
---|
531 | endif |
---|
532 | |
---|
533 | else |
---|
534 | // FM(B) panel |
---|
535 | Make/O/D/N=(dimY) tmpTube |
---|
536 | tmpTube = data_RealDistY[p][0] |
---|
537 | FindLevel/P/Q tmpTube yCtr*10 |
---|
538 | if(V_Flag) |
---|
539 | edge = data_realDistY[0][47] //y tube 47 |
---|
540 | delta = abs(yCtr*10 - edge) |
---|
541 | y_pix[0] = dimY-1 + delta/tube_width //since the top edge of the B panels is pixel 47 |
---|
542 | else |
---|
543 | y_pix[0] = V_LevelX |
---|
544 | endif |
---|
545 | |
---|
546 | endif |
---|
547 | endif |
---|
548 | |
---|
549 | // the x-center will be on the panel in this direction |
---|
550 | Make/O/D/N=(dimX) tmpTube |
---|
551 | tmpTube = data_RealDistX[p][0] |
---|
552 | FindLevel /P/Q tmpTube, xCtr*10 |
---|
553 | |
---|
554 | x_pix[0] = V_levelX |
---|
555 | KillWaves/Z tmpTube |
---|
556 | |
---|
557 | endif |
---|
558 | |
---|
559 | return(0) |
---|
560 | end |
---|
561 | |
---|
562 | // converts from [cm] beam center to pixels |
---|
563 | // |
---|
564 | // the value in pixels is written to the local data folder, NOT to disk (it is recalculated as needed) |
---|
565 | // |
---|
566 | Function V_ConvertBeamCtr_to_pixB(folder,detStr,destPath) |
---|
567 | String folder,detStr,destPath |
---|
568 | |
---|
569 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
570 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
571 | |
---|
572 | Variable dimX,dimY,xCtr,yCtr |
---|
573 | dimX = DimSize(data_realDistX,0) |
---|
574 | dimY = DimSize(data_realDistX,1) |
---|
575 | |
---|
576 | xCtr = V_getDet_beam_center_x(folder,detStr) //these are in cm, *10 to get mm |
---|
577 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
578 | |
---|
579 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
580 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
581 | WAVE x_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
582 | WAVE y_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
583 | |
---|
584 | |
---|
585 | // simple wave lookup |
---|
586 | // can't use x_pix[0] = data_RealDistX(xCtr)[0] since the data has no x-scale and (xCtr) is interpreted |
---|
587 | // as a point value |
---|
588 | |
---|
589 | // |
---|
590 | //xCtr, yCtr are in cm, *10 to get mm to compare to distance array |
---|
591 | |
---|
592 | Make/O/D/N=(dimX) tmpTube |
---|
593 | tmpTube = data_RealDistX[p][0] |
---|
594 | FindLevel /P/Q tmpTube, xCtr*10 |
---|
595 | |
---|
596 | x_pix[0] = V_levelX |
---|
597 | KillWaves/Z tmpTube |
---|
598 | |
---|
599 | |
---|
600 | Make/O/D/N=(dimY) tmpTube |
---|
601 | tmpTube = data_RealDistY[0][p] |
---|
602 | FindLevel /P/Q tmpTube, yCtr*10 |
---|
603 | |
---|
604 | y_pix[0] = V_levelX |
---|
605 | KillWaves/Z tmpTube |
---|
606 | |
---|
607 | print "pixel ctr B = ",x_pix[0],y_pix[0] |
---|
608 | |
---|
609 | return(0) |
---|
610 | end |
---|
611 | |
---|
612 | // |
---|
613 | // |
---|
614 | // TODO |
---|
615 | // -- VERIFY the calculations |
---|
616 | // -- verify where this needs to be done (if the beam center is changed) |
---|
617 | // -- then the q-calculation needs to be re-done |
---|
618 | // |
---|
619 | // -- not much is known about the "B" detector, so this |
---|
620 | // all hinges on the non-linear corrections being done correctly for that detector |
---|
621 | // |
---|
622 | // Variable detCtrX, detCtrY |
---|
623 | // // get the pixel center of the detector (not the beam center) |
---|
624 | // detCtrX = trunc( DimSize(dataW,0)/2 ) // |
---|
625 | // detCtrY = trunc( DimSize(dataW,1)/2 ) |
---|
626 | // |
---|
627 | // |
---|
628 | Function V_ConvertBeamCtrPix_to_mmB(folder,detStr,destPath) |
---|
629 | String folder,detStr,destPath |
---|
630 | |
---|
631 | |
---|
632 | // DoAlert 0,"Error - Beam center is being interpreted as pixels, but needs to be in cm. V_ConvertBeamCtrPix_to_mmB()" |
---|
633 | |
---|
634 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
635 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
636 | |
---|
637 | Variable xCtr,yCtr |
---|
638 | xCtr = V_getDet_beam_center_x(folder,detStr) |
---|
639 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
640 | |
---|
641 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
642 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
643 | WAVE x_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
644 | WAVE y_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
645 | |
---|
646 | x_mm[0] = data_realDistX[xCtr][0] |
---|
647 | y_mm[0] = data_realDistY[0][yCtr] |
---|
648 | |
---|
649 | return(0) |
---|
650 | end |
---|
651 | |
---|
652 | |
---|
653 | |
---|
654 | |
---|
655 | |
---|
656 | |
---|
657 | ///// |
---|
658 | // |
---|
659 | // non-linear corrections to the tube pixels |
---|
660 | // - returns the distance in mm (although this may change) |
---|
661 | // |
---|
662 | // c0,c1,c2,pix |
---|
663 | // c0-c2 are the fit coefficients |
---|
664 | // pix is the test pixel |
---|
665 | // |
---|
666 | // returns the distance in mm (relative to ctr pixel) |
---|
667 | // ctr is the center pixel, as defined when fitting to quadratic was done |
---|
668 | // |
---|
669 | Function V_TubePixel_to_mm(c0,c1,c2,pix) |
---|
670 | Variable c0,c1,c2,pix |
---|
671 | |
---|
672 | Variable dist |
---|
673 | dist = c0 + c1*pix + c2*pix*pix |
---|
674 | |
---|
675 | return(dist) |
---|
676 | End |
---|
677 | // |
---|
678 | //// |
---|
679 | |
---|
680 | |
---|
681 | // |
---|
682 | // TESTING ONLY |
---|
683 | Proc V_MakeFakeCalibrationWaves() |
---|
684 | // make these in the RAW data folder, before converting to a work folder |
---|
685 | // - then they will be "found" by get() |
---|
686 | // -- only for the tube, not the Back det |
---|
687 | |
---|
688 | // DoAlert 0, "re-do this and do a better job of filling the fake calibration data" |
---|
689 | |
---|
690 | DoAlert 0, "Calibration waves are read in from the data file" |
---|
691 | |
---|
692 | // V_fMakeFakeCalibrationWaves() |
---|
693 | End |
---|
694 | |
---|
695 | |
---|
696 | |
---|
697 | // |
---|
698 | // TESTING ONLY |
---|
699 | // |
---|
700 | // orientation does not matter, there are 48 tubes in each bank |
---|
701 | // so dimension (3,48) for everything. |
---|
702 | // |
---|
703 | // -- but the orientation does indicate TB vs LR, which has implications for |
---|
704 | // the (fictional) dimension of the pixel along the tube axis, at least as far |
---|
705 | // as for making the fake coefficients. |
---|
706 | // |
---|
707 | Function V_fMakeFakeCalibrationWaves() |
---|
708 | |
---|
709 | Variable ii,pixSize |
---|
710 | String detStr,fname="RAW",orientation |
---|
711 | |
---|
712 | for(ii=0;ii<ItemsInList(ksDetectorListNoB);ii+=1) |
---|
713 | detStr = StringFromList(ii, ksDetectorListNoB, ";") |
---|
714 | // Wave w = V_getDetectorDataW(fname,detStr) |
---|
715 | Make/O/D/N=(3,48) $("root:Packages:NIST:VSANS:RAW:entry:instrument:detector_"+detStr+":spatial_calibration") |
---|
716 | Wave calib = $("root:Packages:NIST:VSANS:RAW:entry:instrument:detector_"+detStr+":spatial_calibration") |
---|
717 | // !!!! this overwrites what is there |
---|
718 | |
---|
719 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
720 | if(cmpstr(orientation,"vertical")==0) |
---|
721 | // this is vertical tube data dimensioned as (Ntubes,Npix) |
---|
722 | pixSize = 8.4 //V_getDet_y_pixel_size(fname,detStr) |
---|
723 | |
---|
724 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
725 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
726 | pixSize = 4 //V_getDet_x_pixel_size(fname,detStr) |
---|
727 | |
---|
728 | else |
---|
729 | DoAlert 0,"Orientation not correctly passed in NonLinearCorrection(). No correction done." |
---|
730 | endif |
---|
731 | |
---|
732 | calib[0][] = -(128/2)*pixSize //approx (n/2)*pixSixe |
---|
733 | calib[1][] = pixSize |
---|
734 | calib[2][] = 2e-4 |
---|
735 | |
---|
736 | endfor |
---|
737 | |
---|
738 | // now fake calibration for "B" |
---|
739 | Wave cal_x = V_getDet_cal_x("RAW","B") |
---|
740 | Wave cal_y = V_getDet_cal_y("RAW","B") |
---|
741 | |
---|
742 | cal_x = .34 // mm, ignore the other 2 values |
---|
743 | cal_y = .34 // mm |
---|
744 | return(0) |
---|
745 | End |
---|
746 | |
---|
747 | // |
---|
748 | // (DONE) |
---|
749 | // x- MUST VERIFY the definition of SDD and how (if) setback is written to the data files |
---|
750 | // x- currently I'm assuming that the SDD is the "nominal" value which is correct for the |
---|
751 | // L/R panels, but is not correct for the T/B panels (must add in the setback) |
---|
752 | // |
---|
753 | // |
---|
754 | // |
---|
755 | // data_realDistX, Y must be previously generated from running NonLinearCorrection() |
---|
756 | // |
---|
757 | // call with: |
---|
758 | // fname as the WORK folder, "RAW" |
---|
759 | // detStr = detector String, "FL" |
---|
760 | // destPath = path to destination WORK folder ("root:Packages:NIST:VSANS:"+folder) |
---|
761 | // |
---|
762 | Function V_Detector_CalcQVals(fname,detStr,destPath) |
---|
763 | String fname,detStr,destPath |
---|
764 | |
---|
765 | String orientation |
---|
766 | Variable xCtr,yCtr,lambda,sdd |
---|
767 | |
---|
768 | // get all of the geometry information |
---|
769 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
770 | |
---|
771 | |
---|
772 | sdd = V_getDet_ActualDistance(fname,detStr) //sdd derived, including setback [cm] |
---|
773 | |
---|
774 | // this is the ctr in pixels --xx-- (now it is in cm!) |
---|
775 | // xCtr = V_getDet_beam_center_x(fname,detStr) |
---|
776 | // yCtr = V_getDet_beam_center_y(fname,detStr) |
---|
777 | // this is ctr in mm |
---|
778 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
779 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
780 | lambda = V_getWavelength(fname) |
---|
781 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
782 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
783 | |
---|
784 | // make the new waves |
---|
785 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qTot_"+detStr) |
---|
786 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qx_"+detStr) |
---|
787 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qy_"+detStr) |
---|
788 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qz_"+detStr) |
---|
789 | Wave qTot = $(destPath + ":entry:instrument:detector_"+detStr+":qTot_"+detStr) |
---|
790 | Wave qx = $(destPath + ":entry:instrument:detector_"+detStr+":qx_"+detStr) |
---|
791 | Wave qy = $(destPath + ":entry:instrument:detector_"+detStr+":qy_"+detStr) |
---|
792 | Wave qz = $(destPath + ":entry:instrument:detector_"+detStr+":qz_"+detStr) |
---|
793 | |
---|
794 | // calculate all of the q-values |
---|
795 | // sdd is passed in [cm] |
---|
796 | |
---|
797 | |
---|
798 | // after adding in the 680x1656 back detector, load time was 7.8s, without multithreading |
---|
799 | // with multithreading, 1.9s |
---|
800 | // qTot = V_CalcQval(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
801 | // qx = V_CalcQX(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
802 | // qy = V_CalcQY(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
803 | // qz = V_CalcQZ(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
804 | |
---|
805 | MultiThread qTot = V_CalcQval(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
806 | MultiThread qx = V_CalcQX(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
807 | MultiThread qy = V_CalcQY(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
808 | MultiThread qz = V_CalcQZ(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
809 | |
---|
810 | return(0) |
---|
811 | End |
---|
812 | |
---|
813 | |
---|
814 | //function to calculate the overall q-value, given all of the necesary trig inputs |
---|
815 | // |
---|
816 | // (DONE) |
---|
817 | // x- verify the calculation (accuracy - in all input conditions) |
---|
818 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
819 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
820 | // to each pixel |
---|
821 | // |
---|
822 | //sdd is in [cm] |
---|
823 | // distX and distY are in [mm] |
---|
824 | //wavelength is in Angstroms |
---|
825 | // |
---|
826 | //returned magnitude of Q is in 1/Angstroms |
---|
827 | // |
---|
828 | ThreadSafe Function V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
829 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
830 | Wave distX,distY |
---|
831 | |
---|
832 | Variable dx,dy,qval,two_theta,dist |
---|
833 | |
---|
834 | |
---|
835 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
836 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
837 | dist = sqrt(dx^2 + dy^2) |
---|
838 | |
---|
839 | dist /= 10 // convert mm to cm |
---|
840 | |
---|
841 | two_theta = atan(dist/sdd) |
---|
842 | |
---|
843 | qval = 4*Pi/lam*sin(two_theta/2) |
---|
844 | |
---|
845 | return qval |
---|
846 | End |
---|
847 | |
---|
848 | //calculates just the q-value in the x-direction on the detector |
---|
849 | // (DONE) |
---|
850 | // x- verify the calculation (accuracy - in all input conditions) |
---|
851 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
852 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
853 | // to each pixel |
---|
854 | // |
---|
855 | // |
---|
856 | // this properly accounts for qz |
---|
857 | // |
---|
858 | ThreadSafe Function V_CalcQX(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
859 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
860 | Wave distX,distY |
---|
861 | |
---|
862 | Variable qx,qval,phi,dx,dy,dist,two_theta |
---|
863 | |
---|
864 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
865 | |
---|
866 | |
---|
867 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
868 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
869 | phi = V_FindPhi(dx,dy) |
---|
870 | |
---|
871 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
872 | dist = sqrt(dx^2 + dy^2) |
---|
873 | dist /= 10 // convert mm to cm |
---|
874 | |
---|
875 | two_theta = atan(dist/sdd) |
---|
876 | |
---|
877 | qx = qval*cos(two_theta/2)*cos(phi) |
---|
878 | |
---|
879 | return qx |
---|
880 | End |
---|
881 | |
---|
882 | //calculates just the q-value in the y-direction on the detector |
---|
883 | // (DONE) |
---|
884 | // x- verify the calculation (accuracy - in all input conditions) |
---|
885 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
886 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
887 | // to each pixel |
---|
888 | // |
---|
889 | // |
---|
890 | // this properly accounts for qz |
---|
891 | // |
---|
892 | ThreadSafe Function V_CalcQY(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
893 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
894 | Wave distX,distY |
---|
895 | |
---|
896 | Variable qy,qval,phi,dx,dy,dist,two_theta |
---|
897 | |
---|
898 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
899 | |
---|
900 | |
---|
901 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
902 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
903 | phi = V_FindPhi(dx,dy) |
---|
904 | |
---|
905 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
906 | dist = sqrt(dx^2 + dy^2) |
---|
907 | dist /= 10 // convert mm to cm |
---|
908 | |
---|
909 | two_theta = atan(dist/sdd) |
---|
910 | |
---|
911 | qy = qval*cos(two_theta/2)*sin(phi) |
---|
912 | |
---|
913 | return qy |
---|
914 | End |
---|
915 | |
---|
916 | //calculates just the q-value in the z-direction on the detector |
---|
917 | // (DONE) |
---|
918 | // x- verify the calculation (accuracy - in all input conditions) |
---|
919 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
920 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
921 | // to each pixel |
---|
922 | // |
---|
923 | // not actually used for any calculations, but here for completeness if anyone asks, or for 2D data export |
---|
924 | // |
---|
925 | // this properly accounts for qz, because it is qz |
---|
926 | // |
---|
927 | ThreadSafe Function V_CalcQZ(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
928 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
929 | Wave distX,distY |
---|
930 | |
---|
931 | Variable qz,qval,phi,dx,dy,dist,two_theta |
---|
932 | |
---|
933 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
934 | |
---|
935 | |
---|
936 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
937 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
938 | |
---|
939 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
940 | dist = sqrt(dx^2 + dy^2) |
---|
941 | dist /= 10 // convert mm to cm |
---|
942 | |
---|
943 | two_theta = atan(dist/sdd) |
---|
944 | |
---|
945 | qz = qval*sin(two_theta/2) |
---|
946 | |
---|
947 | return qz |
---|
948 | End |
---|
949 | |
---|
950 | |
---|
951 | // |
---|
952 | // (DONE) |
---|
953 | // x- VERIFY calculations |
---|
954 | // x- This is the actual solid angle per pixel, not a ratio vs. some "unit SA" |
---|
955 | // Do I just correct for the different area vs. the "nominal" central area? |
---|
956 | // x- decide how to implement - YES - directly change the data values (as was done in the past) |
---|
957 | // or (NOT done this way...use this as a weighting for when the data is binned to I(q). In the second method, 2D data |
---|
958 | // would need this to be applied before exporting) |
---|
959 | // x- do I keep a wave note indicating that this correction has been applied to the data |
---|
960 | // so that it can be "un-applied"? NO |
---|
961 | // x- do I calculate theta from geometry directly, or get it from Q (Assuming it's present?) |
---|
962 | // (YES just from geometry, since I need SDD and dx and dy values...) |
---|
963 | // |
---|
964 | // "B" is passed, so I need to check for "B" and for panel orientation |
---|
965 | // -if it is detector "B" (not tubes), then the normal solid angle correction applies |
---|
966 | // -if it is a tube panel, then I need to know the orientation, to know which angles |
---|
967 | // and pixel dimensions to use |
---|
968 | // |
---|
969 | // *** UPDATED 1/2020 SRK |
---|
970 | // -using new calculation since the lateral direction of the tubes does not affect the solid angle |
---|
971 | // projection (see He (2015) and John's memo) |
---|
972 | // |
---|
973 | // |
---|
974 | Function V_SolidAngleCorrection(w,w_err,fname,detStr,destPath) |
---|
975 | Wave w,w_err |
---|
976 | String fname,detStr,destPath |
---|
977 | |
---|
978 | Variable sdd,xCtr,yCtr,lambda |
---|
979 | String orientation |
---|
980 | |
---|
981 | // get all of the geometry information |
---|
982 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
983 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
984 | |
---|
985 | // this is ctr in mm |
---|
986 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
987 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
988 | lambda = V_getWavelength(fname) |
---|
989 | |
---|
990 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
991 | |
---|
992 | Wave data_realDistX = data_realDistX |
---|
993 | Wave data_realDistY = data_realDistY |
---|
994 | |
---|
995 | Duplicate/O w solid_angle,tmp_theta,tmp_dist,tmp_theta_i //in the current df |
---|
996 | |
---|
997 | //// calculate the scattering angle |
---|
998 | // dx = (distX - xctr) //delta x in mm |
---|
999 | // dy = (distY - yctr) //delta y in mm |
---|
1000 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
1001 | |
---|
1002 | tmp_dist /= 10 // convert mm to cm |
---|
1003 | // sdd is in [cm] |
---|
1004 | |
---|
1005 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the (total) scattering angle |
---|
1006 | |
---|
1007 | Variable ii,jj,numx,numy,dx,dy |
---|
1008 | numx = DimSize(tmp_theta,0) |
---|
1009 | numy = DimSize(tmp_theta,1) |
---|
1010 | |
---|
1011 | if(cmpstr(detStr,"B")==0) |
---|
1012 | //detector B is a grid, straightforward cos^3 solid angle |
---|
1013 | for(ii=0 ;ii<numx;ii+=1) |
---|
1014 | for(jj=0;jj<numy;jj+=1) |
---|
1015 | |
---|
1016 | if(ii==0) //do a forward difference if ii==0 |
---|
1017 | dx = (data_realDistX[ii+1][jj] - data_realDistX[ii][jj]) //delta x for the pixel |
---|
1018 | else |
---|
1019 | dx = (data_realDistX[ii][jj] - data_realDistX[ii-1][jj]) //delta x for the pixel |
---|
1020 | endif |
---|
1021 | |
---|
1022 | |
---|
1023 | if(jj==0) |
---|
1024 | dy = (data_realDistY[ii][jj+1] - data_realDistY[ii][jj]) //delta y for the pixel |
---|
1025 | else |
---|
1026 | dy = (data_realDistY[ii][jj] - data_realDistY[ii][jj-1]) //delta y for the pixel |
---|
1027 | endif |
---|
1028 | |
---|
1029 | dx /= 10 |
---|
1030 | dy /= 10 // convert mm to cm (since sdd is in cm) |
---|
1031 | solid_angle[ii][jj] = dx*dy //this is in cm^2 |
---|
1032 | endfor |
---|
1033 | endfor |
---|
1034 | |
---|
1035 | // to cover up any issues w/negative dx or dy |
---|
1036 | solid_angle = abs(solid_angle) |
---|
1037 | |
---|
1038 | // solid_angle correction |
---|
1039 | // == dx*dy*cos^3/sdd^2 |
---|
1040 | solid_angle *= (cos(tmp_theta))^3 |
---|
1041 | solid_angle /= sdd^2 |
---|
1042 | |
---|
1043 | // Here it is! Apply the correction to the intensity (I divide -- to get the counts per solid angle!!) |
---|
1044 | w /= solid_angle |
---|
1045 | |
---|
1046 | // correctly apply the correction to the error wave (assume a perfect value?) |
---|
1047 | w_err /= solid_angle // |
---|
1048 | |
---|
1049 | else |
---|
1050 | // |
---|
1051 | //different calculation for the tubes, different calculation based on XY orientation |
---|
1052 | // |
---|
1053 | if(cmpstr(orientation,"vertical")==0) |
---|
1054 | // L/R panels, tube axis is y-direction |
---|
1055 | // this is now a different tmp_dist |
---|
1056 | // convert everything to cm first! |
---|
1057 | // sdd is in [cm], everything else is in [mm] |
---|
1058 | tmp_dist = (data_realDistY/10 - yctr/10)/sqrt((data_realDistX/10 - xctr/10)^2 + sdd^2) |
---|
1059 | tmp_theta_i = atan(tmp_dist) //this is theta_y |
---|
1060 | |
---|
1061 | else |
---|
1062 | // horizontal orientation (T/B panels) |
---|
1063 | // this is now a different tmp_dist |
---|
1064 | // convert everything to cm first! |
---|
1065 | // sdd is in [cm], everything else is in [mm] |
---|
1066 | tmp_dist = (data_realDistX/10 - xctr/10)/sqrt((data_realDistY/10 - yctr/10)^2 + sdd^2) |
---|
1067 | tmp_theta_i = atan(tmp_dist) //this is theta_x |
---|
1068 | |
---|
1069 | endif |
---|
1070 | |
---|
1071 | for(ii=0 ;ii<numx;ii+=1) |
---|
1072 | for(jj=0;jj<numy;jj+=1) |
---|
1073 | |
---|
1074 | if(ii==0) //do a forward difference if ii==0 |
---|
1075 | dx = (data_realDistX[ii+1][jj] - data_realDistX[ii][jj]) //delta x for the pixel |
---|
1076 | else |
---|
1077 | dx = (data_realDistX[ii][jj] - data_realDistX[ii-1][jj]) //delta x for the pixel |
---|
1078 | endif |
---|
1079 | |
---|
1080 | |
---|
1081 | if(jj==0) |
---|
1082 | dy = (data_realDistY[ii][jj+1] - data_realDistY[ii][jj]) //delta y for the pixel |
---|
1083 | else |
---|
1084 | dy = (data_realDistY[ii][jj] - data_realDistY[ii][jj-1]) //delta y for the pixel |
---|
1085 | endif |
---|
1086 | |
---|
1087 | dx /= 10 |
---|
1088 | dy /= 10 // convert mm to cm (since sdd is in cm) |
---|
1089 | solid_angle[ii][jj] = dx*dy //this is in cm^2 |
---|
1090 | endfor |
---|
1091 | endfor |
---|
1092 | |
---|
1093 | // to cover up any issues w/negative dx or dy |
---|
1094 | solid_angle = abs(solid_angle) |
---|
1095 | |
---|
1096 | // solid_angle correction |
---|
1097 | // == dx*dy*cos(th)^2*cos(th_i)/sdd^2 using either the theta_x or theta_y value |
---|
1098 | solid_angle *= (cos(tmp_theta))^2*cos(tmp_theta_i) |
---|
1099 | solid_angle /= sdd^2 |
---|
1100 | |
---|
1101 | // Here it is! Apply the correction to the intensity (I divide -- to get the counts per solid angle!!) |
---|
1102 | w /= solid_angle |
---|
1103 | |
---|
1104 | // |
---|
1105 | // correctly apply the correction to the error wave (assume a perfect value?) |
---|
1106 | w_err /= solid_angle // |
---|
1107 | |
---|
1108 | endif |
---|
1109 | |
---|
1110 | |
---|
1111 | // DONE x- clean up after I'm satisfied computations are correct |
---|
1112 | KillWaves/Z tmp_theta,tmp_dist,tmp_theta_i |
---|
1113 | |
---|
1114 | return(0) |
---|
1115 | end |
---|
1116 | |
---|
1117 | // this is the incorrect solid angle correction that does not take into |
---|
1118 | // account the tube geometry. It is correct for the high-res detector (and the 30m Ordela) |
---|
1119 | // |
---|
1120 | // -- only for testing to prove that the cos(th)^2 *cos(th_i) is correct |
---|
1121 | // |
---|
1122 | Function V_SolidAngleCorrection_COS3(w,w_err,fname,detStr,destPath) |
---|
1123 | Wave w,w_err |
---|
1124 | String fname,detStr,destPath |
---|
1125 | |
---|
1126 | Variable sdd,xCtr,yCtr,lambda |
---|
1127 | String orientation |
---|
1128 | |
---|
1129 | // get all of the geometry information |
---|
1130 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
1131 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
1132 | |
---|
1133 | // this is ctr in mm |
---|
1134 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
1135 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
1136 | lambda = V_getWavelength(fname) |
---|
1137 | |
---|
1138 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
1139 | |
---|
1140 | Wave data_realDistX = data_realDistX |
---|
1141 | Wave data_realDistY = data_realDistY |
---|
1142 | |
---|
1143 | Duplicate/O w solid_angle,tmp_theta,tmp_dist //in the current df |
---|
1144 | |
---|
1145 | //// calculate the scattering angle |
---|
1146 | // dx = (distX - xctr) //delta x in mm |
---|
1147 | // dy = (distY - yctr) //delta y in mm |
---|
1148 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
1149 | |
---|
1150 | tmp_dist /= 10 // convert mm to cm |
---|
1151 | // sdd is in [cm] |
---|
1152 | |
---|
1153 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the (total) scattering angle |
---|
1154 | |
---|
1155 | Variable ii,jj,numx,numy,dx,dy |
---|
1156 | numx = DimSize(tmp_theta,0) |
---|
1157 | numy = DimSize(tmp_theta,1) |
---|
1158 | |
---|
1159 | for(ii=0 ;ii<numx;ii+=1) |
---|
1160 | for(jj=0;jj<numy;jj+=1) |
---|
1161 | |
---|
1162 | if(ii==0) //do a forward difference if ii==0 |
---|
1163 | dx = (data_realDistX[ii+1][jj] - data_realDistX[ii][jj]) //delta x for the pixel |
---|
1164 | else |
---|
1165 | dx = (data_realDistX[ii][jj] - data_realDistX[ii-1][jj]) //delta x for the pixel |
---|
1166 | endif |
---|
1167 | |
---|
1168 | |
---|
1169 | if(jj==0) |
---|
1170 | dy = (data_realDistY[ii][jj+1] - data_realDistY[ii][jj]) //delta y for the pixel |
---|
1171 | else |
---|
1172 | dy = (data_realDistY[ii][jj] - data_realDistY[ii][jj-1]) //delta y for the pixel |
---|
1173 | endif |
---|
1174 | |
---|
1175 | dx /= 10 |
---|
1176 | dy /= 10 // convert mm to cm (since sdd is in cm) |
---|
1177 | solid_angle[ii][jj] = dx*dy //this is in cm^2 |
---|
1178 | endfor |
---|
1179 | endfor |
---|
1180 | |
---|
1181 | // to cover up any issues w/negative dx or dy |
---|
1182 | solid_angle = abs(solid_angle) |
---|
1183 | |
---|
1184 | // solid_angle correction |
---|
1185 | // == dx*dy*cos^3/sdd^2 |
---|
1186 | solid_angle *= (cos(tmp_theta))^3 |
---|
1187 | solid_angle /= sdd^2 |
---|
1188 | |
---|
1189 | // Here it is! Apply the correction to the intensity (I divide -- to get the counts per solid angle!!) |
---|
1190 | w /= solid_angle |
---|
1191 | |
---|
1192 | // correctly apply the correction to the error wave (assume a perfect value?) |
---|
1193 | w_err /= solid_angle // |
---|
1194 | |
---|
1195 | |
---|
1196 | // DONE x- clean up after I'm satisfied computations are correct |
---|
1197 | KillWaves/Z tmp_theta,tmp_dist,tmp_theta_i |
---|
1198 | |
---|
1199 | return(0) |
---|
1200 | end |
---|
1201 | |
---|
1202 | |
---|
1203 | |
---|
1204 | // |
---|
1205 | // Large angle transmission correction |
---|
1206 | // |
---|
1207 | // DIVIDE the intensity by this correction to get the right answer |
---|
1208 | // |
---|
1209 | // |
---|
1210 | // Apply the large angle transmssion correction as the data is converted to WORK |
---|
1211 | // so that whether the data is saved as 2D or 1D, the correction has properly been done. |
---|
1212 | // |
---|
1213 | // This is, however, a SAMPLE dependent calculation, not purely instrument geometry. |
---|
1214 | // |
---|
1215 | Function V_LargeAngleTransmissionCorr(w,w_err,fname,detStr,destPath) |
---|
1216 | Wave w,w_err |
---|
1217 | String fname,detStr,destPath |
---|
1218 | |
---|
1219 | Variable sdd,xCtr,yCtr,trans,trans_err,uval |
---|
1220 | |
---|
1221 | // get all of the geometry information |
---|
1222 | // orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
1223 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
1224 | |
---|
1225 | // this is ctr in mm |
---|
1226 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
1227 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
1228 | trans = V_getSampleTransmission(fname) |
---|
1229 | trans_err = V_getSampleTransError(fname) |
---|
1230 | |
---|
1231 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
1232 | |
---|
1233 | Wave data_realDistX = data_realDistX |
---|
1234 | Wave data_realDistY = data_realDistY |
---|
1235 | |
---|
1236 | Duplicate/O w lat_corr,tmp_theta,tmp_dist,lat_err,tmp_err //in the current df |
---|
1237 | |
---|
1238 | //// calculate the scattering angle |
---|
1239 | // dx = (distX - xctr) //delta x in mm |
---|
1240 | // dy = (distY - yctr) //delta y in mm |
---|
1241 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
1242 | |
---|
1243 | tmp_dist /= 10 // convert mm to cm |
---|
1244 | // sdd is in [cm] |
---|
1245 | |
---|
1246 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the scattering angle |
---|
1247 | |
---|
1248 | Variable ii,jj,numx,numy,dx,dy,cos_th,arg,tmp |
---|
1249 | numx = DimSize(tmp_theta,0) |
---|
1250 | numy = DimSize(tmp_theta,1) |
---|
1251 | |
---|
1252 | |
---|
1253 | //optical thickness |
---|
1254 | uval = -ln(trans) //use natural logarithm |
---|
1255 | |
---|
1256 | for(ii=0 ;ii<numx;ii+=1) |
---|
1257 | for(jj=0;jj<numy;jj+=1) |
---|
1258 | |
---|
1259 | cos_th = cos(tmp_theta[ii][jj]) |
---|
1260 | arg = (1-cos_th)/cos_th |
---|
1261 | |
---|
1262 | // a Taylor series around uval*arg=0 only needs about 4 terms for very good accuracy |
---|
1263 | // correction= 1 - 0.5*uval*arg + (uval*arg)^2/6 - (uval*arg)^3/24 + (uval*arg)^4/120 |
---|
1264 | // OR |
---|
1265 | if((uval<0.01) || (cos_th>0.99)) |
---|
1266 | //small arg, approx correction |
---|
1267 | lat_corr[ii][jj] = 1-0.5*uval*arg |
---|
1268 | else |
---|
1269 | //large arg, exact correction |
---|
1270 | lat_corr[ii][jj] = (1-exp(-uval*arg))/(uval*arg) |
---|
1271 | endif |
---|
1272 | |
---|
1273 | // (DONE) |
---|
1274 | // x- properly calculate and apply the 2D error propagation |
---|
1275 | if(trans == 1) |
---|
1276 | lat_err[ii][jj] = 0 //no correction, no error |
---|
1277 | else |
---|
1278 | //sigT, calculated from the Taylor expansion |
---|
1279 | tmp = (1/trans)*(arg/2-arg^2/3*uval+arg^3/8*uval^2-arg^4/30*uval^3) |
---|
1280 | tmp *= tmp |
---|
1281 | tmp *= trans_err^2 |
---|
1282 | tmp = sqrt(tmp) //sigT |
---|
1283 | |
---|
1284 | lat_err[ii][jj] = tmp |
---|
1285 | endif |
---|
1286 | |
---|
1287 | |
---|
1288 | endfor |
---|
1289 | endfor |
---|
1290 | |
---|
1291 | |
---|
1292 | |
---|
1293 | // Here it is! Apply the correction to the intensity (divide -- to get the proper correction) |
---|
1294 | w /= lat_corr |
---|
1295 | |
---|
1296 | // relative errors add in quadrature to the current 2D error |
---|
1297 | tmp_err = (w_err/lat_corr)^2 + (lat_err/lat_corr)^2*w*w/lat_corr^2 |
---|
1298 | tmp_err = sqrt(tmp_err) |
---|
1299 | |
---|
1300 | w_err = tmp_err |
---|
1301 | |
---|
1302 | |
---|
1303 | // DONE x- clean up after I'm satisfied computations are correct |
---|
1304 | KillWaves/Z tmp_theta,tmp_dist,tmp_err,lat_err |
---|
1305 | |
---|
1306 | return(0) |
---|
1307 | end |
---|
1308 | |
---|
1309 | |
---|
1310 | |
---|
1311 | // |
---|
1312 | //test procedure, not called anymore |
---|
1313 | Proc V_AbsoluteScaling(type,c0,c1,c2,c3,c4,c5,I_err) |
---|
1314 | String type |
---|
1315 | Variable c0=1,c1=0.1,c2=0.95,c3=0.1,c4=1,c5=32.0,I_err=0.32 |
---|
1316 | Prompt type,"WORK data type",popup,"CAL;COR;SAM" |
---|
1317 | Prompt c0, "Sample Transmission" |
---|
1318 | Prompt c1, "Sample Thickness (cm)" |
---|
1319 | Prompt c2, "Standard Transmission" |
---|
1320 | Prompt c3, "Standard Thickness (cm)" |
---|
1321 | Prompt c4, "I(0) from standard fit (normalized to 1E8 monitor cts)" |
---|
1322 | Prompt c5, "Standard Cross-Section (cm-1)" |
---|
1323 | Prompt I_err, "error in I(q=0) (one std dev)" |
---|
1324 | |
---|
1325 | Variable err |
---|
1326 | //call the function to do the math |
---|
1327 | //data from "type" will be scaled and deposited in ABS |
---|
1328 | err = V_Absolute_Scale(type,c0,c1,c2,c3,c4,c5,I_err) |
---|
1329 | |
---|
1330 | if(err) |
---|
1331 | Abort "Error in V_Absolute_Scale()" |
---|
1332 | endif |
---|
1333 | |
---|
1334 | //contents are always dumped to ABS |
---|
1335 | type = "ABS" |
---|
1336 | |
---|
1337 | //need to update the display with "data" from the correct dataFolder |
---|
1338 | //reset the current display type to "type" |
---|
1339 | SVAR gCurDispType = root:Packages:NIST:VSANS:Globals:gCurDispType |
---|
1340 | gCurDispType = Type |
---|
1341 | |
---|
1342 | V_UpdateDisplayInformation(Type) |
---|
1343 | |
---|
1344 | End |
---|
1345 | |
---|
1346 | // |
---|
1347 | // |
---|
1348 | // kappa comes in as s_izero, so be sure to use 1/kappa_err |
---|
1349 | // |
---|
1350 | //convert the "type" data to absolute scale using the given standard information |
---|
1351 | //s_ is the standard |
---|
1352 | //w_ is the "work" file |
---|
1353 | //both are work files and should already be normalized to 10^8 monitor counts |
---|
1354 | Function V_Absolute_Scale(type,absStr) |
---|
1355 | String type,absStr |
---|
1356 | |
---|
1357 | |
---|
1358 | Variable w_trans,w_thick,s_trans,s_thick,s_izero,s_cross,kappa_err |
---|
1359 | |
---|
1360 | Variable defmon = 1e8,w_moncount,s1,s2,s3,s4 |
---|
1361 | Variable scale,trans_err |
---|
1362 | Variable err,ii |
---|
1363 | String detStr |
---|
1364 | |
---|
1365 | // be sure that the starting data exists |
---|
1366 | err = V_WorkDataExists(type) |
---|
1367 | if(err==1) |
---|
1368 | return(err) |
---|
1369 | endif |
---|
1370 | |
---|
1371 | //copy from current dir (type) to ABS |
---|
1372 | V_CopyHDFToWorkFolder(type,"ABS") |
---|
1373 | |
---|
1374 | // TODO: -- which monitor to use? Here, I think it should already be normalized to 10^8 |
---|
1375 | // |
---|
1376 | // w_moncount = V_getMonitorCount(type) //monitor count in "type" |
---|
1377 | |
---|
1378 | w_moncount = V_getBeamMonNormData(type) |
---|
1379 | |
---|
1380 | if(w_moncount == 0) |
---|
1381 | //zero monitor counts will give divide by zero --- |
---|
1382 | DoAlert 0,"Total monitor count in data file is zero. No rescaling of data" |
---|
1383 | Return(1) //report error |
---|
1384 | Endif |
---|
1385 | |
---|
1386 | w_trans = V_getSampleTransmission(type) //sample transmission |
---|
1387 | w_thick = V_getSampleThickness(type) //sample thickness |
---|
1388 | trans_err = V_getSampleTransError(type) |
---|
1389 | |
---|
1390 | |
---|
1391 | //get the parames from the list |
---|
1392 | s_trans = NumberByKey("TSTAND", absStr, "=", ";") //parse the list of values |
---|
1393 | s_thick = NumberByKey("DSTAND", absStr, "=", ";") |
---|
1394 | s_izero = NumberByKey("IZERO", absStr, "=", ";") |
---|
1395 | s_cross = NumberByKey("XSECT", absStr, "=", ";") |
---|
1396 | kappa_err = NumberByKey("SDEV", absStr, "=", ";") |
---|
1397 | |
---|
1398 | |
---|
1399 | //calculate scale factor |
---|
1400 | s1 = defmon/w_moncount // monitor count (s1 should be 1) |
---|
1401 | s2 = s_thick/w_thick |
---|
1402 | s3 = s_trans/w_trans |
---|
1403 | s4 = s_cross/s_izero |
---|
1404 | scale = s1*s2*s3*s4 |
---|
1405 | |
---|
1406 | |
---|
1407 | // kappa comes in as s_izero, so be sure to use 1/kappa_err |
---|
1408 | |
---|
1409 | // and now loop through all of the detectors |
---|
1410 | //do the actual absolute scaling here, modifying the data in ABS |
---|
1411 | for(ii=0;ii<ItemsInList(ksDetectorListNoB);ii+=1) |
---|
1412 | detStr = StringFromList(ii, ksDetectorListNoB, ";") |
---|
1413 | Wave data = V_getDetectorDataW("ABS",detStr) |
---|
1414 | Wave data_err = V_getDetectorDataErrW("ABS",detStr) |
---|
1415 | |
---|
1416 | data *= scale |
---|
1417 | data_err = sqrt(scale^2*data_err^2 + scale^2*data^2*(kappa_err^2/s_izero^2 +trans_err^2/w_trans^2)) |
---|
1418 | endfor |
---|
1419 | |
---|
1420 | // do the back detector separately, if it is set to be used |
---|
1421 | NVAR gIgnoreDetB = root:Packages:NIST:VSANS:Globals:gIgnoreDetB |
---|
1422 | if(gIgnoreDetB == 0) |
---|
1423 | detStr = "B" |
---|
1424 | Wave data = V_getDetectorDataW("ABS",detStr) |
---|
1425 | Wave data_err = V_getDetectorDataErrW("ABS",detStr) |
---|
1426 | |
---|
1427 | //get the parames from the list |
---|
1428 | s_trans = NumberByKey("TSTAND_B", absStr, "=", ";") //parse the list of values |
---|
1429 | s_thick = NumberByKey("DSTAND_B", absStr, "=", ";") |
---|
1430 | s_izero = NumberByKey("IZERO_B", absStr, "=", ";") |
---|
1431 | s_cross = NumberByKey("XSECT_B", absStr, "=", ";") |
---|
1432 | kappa_err = NumberByKey("SDEV_B", absStr, "=", ";") |
---|
1433 | |
---|
1434 | //calculate scale factor |
---|
1435 | s1 = defmon/w_moncount // monitor count (s1 should be 1) |
---|
1436 | s2 = s_thick/w_thick |
---|
1437 | s3 = s_trans/w_trans |
---|
1438 | s4 = s_cross/s_izero |
---|
1439 | scale = s1*s2*s3*s4 |
---|
1440 | |
---|
1441 | data *= scale |
---|
1442 | data_err = sqrt(scale^2*data_err^2 + scale^2*data^2*(kappa_err^2/s_izero^2 +trans_err^2/w_trans^2)) |
---|
1443 | endif |
---|
1444 | |
---|
1445 | //********* 15APR02 |
---|
1446 | // DO NOT correct for atenuators here - the COR step already does this, putting all of the data on equal |
---|
1447 | // footing (zero atten) before doing the subtraction. |
---|
1448 | |
---|
1449 | Return (0) //no error |
---|
1450 | End |
---|
1451 | |
---|
1452 | |
---|
1453 | // |
---|
1454 | // TODO: |
---|
1455 | // -- DoAlert 0,"This has not yet been updated for VSANS" |
---|
1456 | // |
---|
1457 | // |
---|
1458 | // match the attenuation of the RAW data to the "type" data |
---|
1459 | // so that they can be properly added |
---|
1460 | // |
---|
1461 | // are the attenuator numbers the same? if so exit |
---|
1462 | // |
---|
1463 | // if not, find the attenuator number for type |
---|
1464 | // - find both attenuation factors |
---|
1465 | // |
---|
1466 | // rescale the raw data to match the ratio of the two attenuation factors |
---|
1467 | // -- adjust the detector count (rw) |
---|
1468 | // -- the linear data |
---|
1469 | // |
---|
1470 | // |
---|
1471 | Function V_Adjust_RAW_Attenuation(type) |
---|
1472 | String type |
---|
1473 | |
---|
1474 | DoAlert 0,"This has not yet been updated for VSANS" |
---|
1475 | |
---|
1476 | WAVE rw=$("root:Packages:NIST:RAW:realsread") |
---|
1477 | WAVE linear_data=$("root:Packages:NIST:RAW:linear_data") |
---|
1478 | WAVE data=$("root:Packages:NIST:RAW:data") |
---|
1479 | WAVE data_err=$("root:Packages:NIST:RAW:linear_data_error") |
---|
1480 | WAVE/T tw = $("root:Packages:NIST:RAW:textRead") |
---|
1481 | |
---|
1482 | WAVE dest_reals=$("root:Packages:NIST:"+type+":realsread") |
---|
1483 | |
---|
1484 | Variable dest_atten,raw_atten,tol |
---|
1485 | Variable lambda,raw_atten_err,raw_AttenFactor,dest_attenFactor,dest_atten_err |
---|
1486 | String fileStr |
---|
1487 | |
---|
1488 | dest_atten = dest_reals[3] |
---|
1489 | raw_atten = rw[3] |
---|
1490 | |
---|
1491 | tol = 0.1 // within 0.1 atten units is OK |
---|
1492 | if(abs(dest_atten - raw_atten) < tol ) |
---|
1493 | return(0) |
---|
1494 | endif |
---|
1495 | |
---|
1496 | fileStr = tw[3] |
---|
1497 | lambda = rw[26] |
---|
1498 | // TODO access correct values |
---|
1499 | raw_AttenFactor = 1//AttenuationFactor(fileStr,lambda,raw_atten,raw_atten_err) |
---|
1500 | dest_AttenFactor = 1//AttenuationFactor(fileStr,lambda,dest_atten,dest_atten_err) |
---|
1501 | |
---|
1502 | rw[2] *= dest_AttenFactor/raw_AttenFactor |
---|
1503 | linear_data *= dest_AttenFactor/raw_AttenFactor |
---|
1504 | |
---|
1505 | // to keep "data" and linear_data in sync |
---|
1506 | data = linear_data |
---|
1507 | |
---|
1508 | return(0) |
---|
1509 | End |
---|
1510 | |
---|
1511 | // |
---|
1512 | // testing procedure, called from a menu selection |
---|
1513 | // |
---|
1514 | Proc V_DIV_a_Workfile(type) |
---|
1515 | String type |
---|
1516 | Prompt type,"WORK data type",popup,"SAM;EMP;BGD;ADJ;" |
---|
1517 | |
---|
1518 | //macro will take whatever is in SELECTED folder and DIVide it by the current |
---|
1519 | //contents of the DIV folder - the function will check for existence |
---|
1520 | //before proceeding |
---|
1521 | |
---|
1522 | Abort "This has not yet been updated for VSANS" |
---|
1523 | |
---|
1524 | Variable err |
---|
1525 | err = V_DIVCorrection(type) //returns err = 1 if data doesn't exist in specified folders |
---|
1526 | |
---|
1527 | if(err) |
---|
1528 | Abort "error in V_DIVCorrection()" |
---|
1529 | endif |
---|
1530 | |
---|
1531 | //contents are NOT always dumped to CAL, but are in the new type folder |
---|
1532 | |
---|
1533 | String newTitle = "WORK_"+type |
---|
1534 | DoWindow/F VSANS_Data |
---|
1535 | DoWindow/T VSANS_Data, newTitle |
---|
1536 | KillStrings/Z newTitle |
---|
1537 | |
---|
1538 | //need to update the display with "data" from the correct dataFolder |
---|
1539 | //reset the current displaytype to "type" |
---|
1540 | String/G root:Packages:NIST:VSANS:Globals:gCurDispType=Type |
---|
1541 | |
---|
1542 | V_UpdateDisplayInformation(type) |
---|
1543 | |
---|
1544 | End |
---|
1545 | |
---|
1546 | |
---|
1547 | // |
---|
1548 | // TODO: |
---|
1549 | // x- DoAlert 0,"This has not yet been updated for VSANS" |
---|
1550 | // -- how is the error propagation handled? Be sure it is calculated correctly when DIV is generated |
---|
1551 | // and is applied correctly here... |
---|
1552 | // |
---|
1553 | //function will divide the contents of "workType" folder with the contents of |
---|
1554 | //the DIV folder + detStr |
---|
1555 | // all data is linear scale for the calculation |
---|
1556 | // |
---|
1557 | Function V_DIVCorrection(data,data_err,detStr,workType) |
---|
1558 | Wave data,data_err |
---|
1559 | String detStr,workType |
---|
1560 | |
---|
1561 | //check for existence of data in type and DIV |
---|
1562 | // if the desired data doesn't exist, let the user know, and abort |
---|
1563 | String destPath="" |
---|
1564 | |
---|
1565 | NVAR gIgnoreDetB = root:Packages:NIST:VSANS:Globals:gIgnoreDetB |
---|
1566 | if(cmpstr(detStr,"B")==0 && gIgnoreDetB) |
---|
1567 | return(0) |
---|
1568 | endif |
---|
1569 | |
---|
1570 | |
---|
1571 | if(WaveExists(data) == 0) |
---|
1572 | Print "The data wave does not exist in V_DIVCorrection()" |
---|
1573 | Return(1) //error condition |
---|
1574 | Endif |
---|
1575 | |
---|
1576 | //check for DIV |
---|
1577 | // if the DIV workfile doesn't exist, let the user know,and abort |
---|
1578 | // !! be sure to check first, before trying to access the wave |
---|
1579 | |
---|
1580 | // WAVE/Z div_data = $("root:Packages:NIST:VSANS:DIV:entry:instrument:detector_"+detStr+":data") |
---|
1581 | if(WaveExists($("root:Packages:NIST:VSANS:DIV:entry:instrument:detector_"+detStr+":data")) == 0) |
---|
1582 | Print "The DIV wave does not exist in V_DIVCorrection()" |
---|
1583 | Return(1) //error condition |
---|
1584 | Endif |
---|
1585 | if(WaveExists($("root:Packages:NIST:VSANS:DIV:entry:instrument:detector_"+detStr+":linear_data_error")) == 0) |
---|
1586 | Print "The DIV error wave does not exist in V_DIVCorrection()" |
---|
1587 | Return(1) //error condition |
---|
1588 | Endif |
---|
1589 | //files exist, proceed |
---|
1590 | |
---|
1591 | WAVE/Z div_data_err = V_getDetectorDataErrW("DIV",detStr) |
---|
1592 | WAVE/Z div_data = V_getDetectorDataW("DIV",detStr) |
---|
1593 | |
---|
1594 | |
---|
1595 | |
---|
1596 | // do the error propagation first, since data is changed by the correction |
---|
1597 | data_err = sqrt(data_err^2/div_data^2 + div_data_err^2 * data^2/div_data^4 ) |
---|
1598 | |
---|
1599 | // then the correction |
---|
1600 | data /= div_data |
---|
1601 | |
---|
1602 | |
---|
1603 | Return(0) |
---|
1604 | End |
---|
1605 | |
---|
1606 | |
---|
1607 | ////////////////////////// |
---|
1608 | // detector corrections to stitch the back detector into one proper image |
---|
1609 | // |
---|
1610 | // |
---|
1611 | // |
---|
1612 | |
---|
1613 | |
---|
1614 | // |
---|
1615 | // to register the image on the back detector panel |
---|
1616 | // |
---|
1617 | // middle portion (552 pix in Y) is held fixed |
---|
1618 | // top portion of image is shifted right and down |
---|
1619 | // bottom portion of image is shifted right and up |
---|
1620 | // |
---|
1621 | // remainder of image is filled with Zero (NaN causes problems converting to WORK) |
---|
1622 | // |
---|
1623 | // currently, data is not added together and averaged, but it could be |
---|
1624 | // |
---|
1625 | Function V_ShiftBackDetImage(w,adjW) |
---|
1626 | Wave w,adjW |
---|
1627 | |
---|
1628 | NVAR gHighResBinning = root:Packages:NIST:VSANS:Globals:gHighResBinning |
---|
1629 | |
---|
1630 | // this is necessary for some old data with the 150x150 back (dummy) panel |
---|
1631 | // the proper back detector has an x-dimension of 680 pixels. Don't do the shift |
---|
1632 | // if the dimensions are incorrect. |
---|
1633 | if(DimSize(w,0) < 680) |
---|
1634 | adjW=w |
---|
1635 | return(0) |
---|
1636 | endif |
---|
1637 | |
---|
1638 | adjW=0 |
---|
1639 | |
---|
1640 | Variable topX,bottomX |
---|
1641 | Variable topY,bottomY |
---|
1642 | Variable totalY,ccdX,ccdY |
---|
1643 | |
---|
1644 | // topX = 7 |
---|
1645 | // topY = 105 |
---|
1646 | |
---|
1647 | // bottomX = 5 |
---|
1648 | // bottomY = 35 |
---|
1649 | |
---|
1650 | // TODOHIGHRES |
---|
1651 | // the detector pix dimensions are hard-wired, be sure the are correct |
---|
1652 | switch(gHighResBinning) |
---|
1653 | case 1: |
---|
1654 | topX = kShift_topX_bin1 |
---|
1655 | topY = kShift_topY_bin1 |
---|
1656 | bottomX = kShift_bottomX_bin1 |
---|
1657 | bottomY = kShift_bottomY_bin1 |
---|
1658 | |
---|
1659 | totalY = 6624 // total YDim |
---|
1660 | ccdY = 2208 // = YDim/3 |
---|
1661 | ccdX = 2720 // = xDim |
---|
1662 | break |
---|
1663 | case 4: |
---|
1664 | topX = kShift_topX_bin4 |
---|
1665 | topY = kShift_topY_bin4 |
---|
1666 | bottomX = kShift_bottomX_bin4 |
---|
1667 | bottomY = kShift_bottomY_bin4 |
---|
1668 | |
---|
1669 | totalY = 1656 // total YDim |
---|
1670 | ccdY = 552 // = YDim/3 |
---|
1671 | ccdX = 680 // = xDim |
---|
1672 | |
---|
1673 | |
---|
1674 | break |
---|
1675 | default: |
---|
1676 | Abort "No binning case matches in V_ShiftBackDetImage" |
---|
1677 | |
---|
1678 | endswitch |
---|
1679 | |
---|
1680 | // middle |
---|
1681 | adjW[][ccdY,ccdY+ccdY] = w[p][q] |
---|
1682 | |
---|
1683 | //top |
---|
1684 | adjW[0+topX,ccdX-1][ccdY+ccdY,totalY-1-topY] = w[p-topX][q+topY] |
---|
1685 | |
---|
1686 | //bottom |
---|
1687 | adjW[0+bottomX,ccdX-1][0+bottomY,ccdY-1] = w[p-bottomX][q-bottomY] |
---|
1688 | |
---|
1689 | |
---|
1690 | return(0) |
---|
1691 | End |
---|
1692 | |
---|
1693 | |
---|
1694 | Proc pV_MedianFilterBack(folder) |
---|
1695 | String folder="RAW" |
---|
1696 | |
---|
1697 | V_MedianFilterBack(folder) |
---|
1698 | end |
---|
1699 | |
---|
1700 | Function V_MedianFilterBack(folder) |
---|
1701 | String folder |
---|
1702 | |
---|
1703 | Wave w = V_getDetectorDataW(folder,"B") |
---|
1704 | |
---|
1705 | NVAR gHighResBinning = root:Packages:NIST:VSANS:Globals:gHighResBinning |
---|
1706 | switch(gHighResBinning) |
---|
1707 | case 1: |
---|
1708 | MatrixFilter /N=11 /P=1 median w // /P=n flag sets the number of passes (default is 1 pass) |
---|
1709 | |
---|
1710 | Print "*** median noise filter 11x11 applied to the back detector (1 pass) ***" |
---|
1711 | break |
---|
1712 | case 4: |
---|
1713 | MatrixFilter /N=3 /P=1 median w // /P=n flag sets the number of passes (default is 1 pass) |
---|
1714 | |
---|
1715 | Print "*** median noise filter 3x3 applied to the back detector (1 pass) ***" |
---|
1716 | break |
---|
1717 | default: |
---|
1718 | Abort "No binning case matches in V_MedianFilterBack" |
---|
1719 | endswitch |
---|
1720 | |
---|
1721 | return(0) |
---|
1722 | End |
---|
1723 | |
---|
1724 | |
---|
1725 | Proc pV_SubtractReadNoiseBack(folder,ReadNoise) |
---|
1726 | String folder="RAW" |
---|
1727 | Variable readNoise=3160 |
---|
1728 | |
---|
1729 | V_SubtractReadNoiseBack(folder,readNoise) |
---|
1730 | end |
---|
1731 | |
---|
1732 | Function V_SubtractReadNoiseBack(folder,readNoise) |
---|
1733 | String folder |
---|
1734 | Variable readNoise |
---|
1735 | |
---|
1736 | Wave w = V_getDetectorDataW(folder,"B") |
---|
1737 | w -= readNoise // a constant value |
---|
1738 | |
---|
1739 | // MatrixFilter /N=3 median w |
---|
1740 | // Print "*** median noise filter applied to the back detector***" |
---|
1741 | |
---|
1742 | return(0) |
---|
1743 | End |
---|
1744 | |
---|
1745 | |
---|
1746 | Proc pV_MedianAndReadNoiseBack(folder,ReadNoise) |
---|
1747 | String folder="RAW" |
---|
1748 | Variable readNoise=3160 |
---|
1749 | |
---|
1750 | V_MedianAndReadNoiseBack(folder,readNoise) |
---|
1751 | end |
---|
1752 | |
---|
1753 | Function V_MedianAndReadNoiseBack(folder,readNoise) |
---|
1754 | String folder |
---|
1755 | Variable readNoise |
---|
1756 | |
---|
1757 | Wave w = V_getDetectorDataW(folder,"B") |
---|
1758 | w -= readNoise // a constant value |
---|
1759 | |
---|
1760 | NVAR gHighResBinning = root:Packages:NIST:VSANS:Globals:gHighResBinning |
---|
1761 | switch(gHighResBinning) |
---|
1762 | case 1: |
---|
1763 | MatrixFilter /N=11 /P=1 median w // /P=n flag sets the number of passes (default is 1 pass) |
---|
1764 | |
---|
1765 | Print "*** median noise filter 11x11 applied to the back detector (1 pass) ***" |
---|
1766 | break |
---|
1767 | case 4: |
---|
1768 | MatrixFilter /N=3 /P=1 median w // /P=n flag sets the number of passes (default is 1 pass) |
---|
1769 | |
---|
1770 | Print "*** median noise filter 3x3 applied to the back detector (1 pass) ***" |
---|
1771 | break |
---|
1772 | default: |
---|
1773 | Abort "No binning case matches in V_MedianAndReadNoiseBack" |
---|
1774 | endswitch |
---|
1775 | |
---|
1776 | return(0) |
---|
1777 | End |
---|
1778 | |
---|
1779 | |
---|
1780 | |
---|
1781 | //////////////// |
---|
1782 | // Detector efficiency and shadowing |
---|
1783 | /////////////// |
---|
1784 | |
---|
1785 | // |
---|
1786 | // Tube efficiency + shadowing |
---|
1787 | // |
---|
1788 | // |
---|
1789 | // -- check for the existence of the proper tables (correct wavelength) |
---|
1790 | // -- generate tables if needed (one-time calculation) |
---|
1791 | // |
---|
1792 | // interpolate the table for the correction - to avoid repeated integration |
---|
1793 | // |
---|
1794 | // store the tables in: root:Packages:NIST:VSANS:Globals:Efficiency: |
---|
1795 | // |
---|
1796 | Function V_TubeEfficiencyShadowCorr(w,w_err,fname,detStr,destPath) |
---|
1797 | Wave w,w_err |
---|
1798 | String fname,detStr,destPath |
---|
1799 | |
---|
1800 | Variable sdd,xCtr,yCtr,lambda |
---|
1801 | String orientation |
---|
1802 | |
---|
1803 | // if the panel is "B", exit - since it is not tubes, and this should not be called |
---|
1804 | if(cmpstr(detStr,"B")==0) |
---|
1805 | return(1) |
---|
1806 | endif |
---|
1807 | |
---|
1808 | // get all of the geometry information |
---|
1809 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
1810 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
1811 | |
---|
1812 | // this is ctr in mm |
---|
1813 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
1814 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
1815 | lambda = V_getWavelength(fname) |
---|
1816 | |
---|
1817 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
1818 | |
---|
1819 | Wave data_realDistX = data_realDistX |
---|
1820 | Wave data_realDistY = data_realDistY |
---|
1821 | |
---|
1822 | Duplicate/O w tmp_theta_x,tmp_theta_y,tmp_dist,tmp_corr //in the current df |
---|
1823 | |
---|
1824 | //// calculate the scattering angles theta_x and theta_y |
---|
1825 | |
---|
1826 | // flip the definitions of x and y for the T/B panels so that x is always lateral WRT the tubes |
---|
1827 | // and y is always along the length of the tubes |
---|
1828 | |
---|
1829 | if(cmpstr(orientation,"vertical")==0) |
---|
1830 | // L/R panels, tube axis is y-direction |
---|
1831 | // this is now a different tmp_dist |
---|
1832 | // convert everything to cm first! |
---|
1833 | // sdd is in [cm], everything else is in [mm] |
---|
1834 | tmp_dist = (data_realDistY/10 - yctr/10)/sqrt((data_realDistX/10 - xctr/10)^2 + sdd^2) |
---|
1835 | tmp_theta_y = atan(tmp_dist) //this is theta_y |
---|
1836 | tmp_theta_x = atan( (data_realDistX/10 - xctr/10)/sdd ) |
---|
1837 | |
---|
1838 | else |
---|
1839 | // horizontal orientation (T/B panels) |
---|
1840 | // this is now a different tmp_dist |
---|
1841 | // convert everything to cm first! |
---|
1842 | // sdd is in [cm], everything else is in [mm] |
---|
1843 | tmp_dist = (data_realDistX/10 - xctr/10)/sqrt((data_realDistY/10 - yctr/10)^2 + sdd^2) |
---|
1844 | tmp_theta_y = atan(tmp_dist) //this is theta_y, along tube direction |
---|
1845 | tmp_theta_x = atan( (data_realDistY/10 - yctr/10)/sdd ) // this is laterally across tubes |
---|
1846 | endif |
---|
1847 | |
---|
1848 | |
---|
1849 | // identify if the 2D efficiency wave has been generated for the data wavelength |
---|
1850 | // |
---|
1851 | // if so, declare |
---|
1852 | // if not, generate |
---|
1853 | |
---|
1854 | if(WaveExists($"root:Packages:NIST:VSANS:Globals:Efficiency:eff") == 0) |
---|
1855 | // generate the proper efficiency wave, at lambda |
---|
1856 | NewDataFolder/O root:Packages:NIST:VSANS:Globals:Efficiency |
---|
1857 | Print "recalculating efficiency table ..." |
---|
1858 | V_TubeShadowEfficiencyTables_oneLam(lambda) |
---|
1859 | // declare the wave |
---|
1860 | Wave/Z effW = root:Packages:NIST:VSANS:Globals:Efficiency:eff |
---|
1861 | else |
---|
1862 | Wave/Z effW = root:Packages:NIST:VSANS:Globals:Efficiency:eff |
---|
1863 | //is the efficiency at the correct wavelength? |
---|
1864 | string str=note(effW) |
---|
1865 | // Print "Note = ",str |
---|
1866 | |
---|
1867 | if(V_CloseEnough(lambda,NumberByKey("LAMBDA", str,"="),0.1)) //absolute difference of < 0.1 A |
---|
1868 | // yes, proceed, no need to do anything |
---|
1869 | else |
---|
1870 | // no, regenerate the efficiency and then proceed (wave already declared) |
---|
1871 | Print "recalculating efficiency table ..." |
---|
1872 | V_TubeShadowEfficiencyTables_oneLam(lambda) |
---|
1873 | endif |
---|
1874 | endif |
---|
1875 | |
---|
1876 | |
---|
1877 | Variable ii,jj,numx,numy,xAngle,yAngle |
---|
1878 | numx = DimSize(w,0) |
---|
1879 | numy = DimSize(w,1) |
---|
1880 | |
---|
1881 | // loop over all of the pixels of the panel and find the interpolated correction (save as a wave) |
---|
1882 | // |
---|
1883 | for(ii=0 ;ii<numx;ii+=1) |
---|
1884 | for(jj=0;jj<numy;jj+=1) |
---|
1885 | |
---|
1886 | // from the angles, find the (x,y) point to interpolate to get the efficiency |
---|
1887 | |
---|
1888 | xAngle = tmp_theta_x[ii][jj] |
---|
1889 | yAngle = tmp_theta_y[ii][jj] |
---|
1890 | |
---|
1891 | xAngle = abs(xAngle) |
---|
1892 | yAngle = abs(yAngle) |
---|
1893 | |
---|
1894 | // the x and y scaling of the eff wave (2D) was set when it was generated (in radians) |
---|
1895 | // simply reading the scaled xy value does not interpolate!! |
---|
1896 | // tmp_corr[ii][jj] = effW(xAngle)(yAngle) // NO, returns "stepped" values |
---|
1897 | tmp_corr[ii][jj] = Interp2D(effW,xAngle,yAngle) |
---|
1898 | |
---|
1899 | endfor |
---|
1900 | endfor |
---|
1901 | // |
---|
1902 | // |
---|
1903 | // apply the correction and calculate the error |
---|
1904 | // |
---|
1905 | // Here it is! Apply the correction to the intensity (divide -- to get the proper correction) |
---|
1906 | w /= tmp_corr |
---|
1907 | // |
---|
1908 | // relative errors add in quadrature to the current 2D error |
---|
1909 | // assume that this numerical calculation of efficiency is exact |
---|
1910 | // |
---|
1911 | // tmp_err = (w_err/tmp_corr)^2 + (lat_err/lat_corr)^2*w*w/lat_corr^2 |
---|
1912 | // tmp_err = sqrt(tmp_err) |
---|
1913 | // |
---|
1914 | // w_err = tmp_err |
---|
1915 | // |
---|
1916 | |
---|
1917 | // TODO |
---|
1918 | // - clean up after I'm satisfied computations are correct |
---|
1919 | // KillWaves/Z tmp_theta_x,tmp_theta_y,tmp_dist,tmp_err,tmp_corr |
---|
1920 | |
---|
1921 | return(0) |
---|
1922 | end |
---|
1923 | |
---|
1924 | |
---|
1925 | |
---|
1926 | // the actual integration of the efficiency for an individual pixel |
---|
1927 | Function V_Efficiency_Integral(pWave,in_u) |
---|
1928 | Wave pWave |
---|
1929 | Variable in_u |
---|
1930 | |
---|
1931 | Variable lambda,th_x,th_y,u_p,integrand,T_sh,max_x,d_ss,d_He |
---|
1932 | |
---|
1933 | lambda = pWave[0] |
---|
1934 | th_x = pWave[1] |
---|
1935 | th_y = pWave[2] |
---|
1936 | |
---|
1937 | u_p = in_u + kTube_cc * cos(th_x) |
---|
1938 | |
---|
1939 | // calculate shadow if th_x > 23.727 deg. th_x is input in radians |
---|
1940 | max_x = 23.727 / 360 * 2*pi |
---|
1941 | if(th_x < max_x) |
---|
1942 | T_sh = 1 |
---|
1943 | else |
---|
1944 | |
---|
1945 | // get d_ss |
---|
1946 | if(abs(u_p) < kTube_ri) |
---|
1947 | d_ss = sqrt( (kTube_ri + kTube_ss)^2 - in_u^2 ) - sqrt( kTube_ri^2 - in_u^2 ) |
---|
1948 | elseif (abs(u_p) < (kTube_ri + kTube_ss)) |
---|
1949 | d_ss = sqrt( (kTube_ri + kTube_ss)^2 - in_u^2 ) |
---|
1950 | else |
---|
1951 | d_ss = 0 |
---|
1952 | endif |
---|
1953 | |
---|
1954 | // get d_He |
---|
1955 | if(abs(u_p) < kTube_ri) |
---|
1956 | d_He = 2 * sqrt( kTube_ri^2 - in_u^2 ) |
---|
1957 | else |
---|
1958 | d_He = 0 |
---|
1959 | endif |
---|
1960 | |
---|
1961 | //calculate T_sh |
---|
1962 | T_sh = exp(-2*kSig_ss*lambda*d_ss/cos(th_y)) * exp(-kSig_8b_He*lambda*d_He/cos(th_y)) |
---|
1963 | |
---|
1964 | endif |
---|
1965 | |
---|
1966 | |
---|
1967 | // calculate the integrand |
---|
1968 | |
---|
1969 | //note that the in_u value is used here to find d_ss and d_he (not u_p) |
---|
1970 | // get d_ss |
---|
1971 | if(abs(in_u) < kTube_ri) |
---|
1972 | d_ss = sqrt( (kTube_ri + kTube_ss)^2 - in_u^2 ) - sqrt( kTube_ri^2 - in_u^2 ) |
---|
1973 | elseif (abs(in_u) < (kTube_ri + kTube_ss)) |
---|
1974 | d_ss = sqrt( (kTube_ri + kTube_ss)^2 - in_u^2 ) |
---|
1975 | else |
---|
1976 | d_ss = 0 |
---|
1977 | endif |
---|
1978 | |
---|
1979 | // get d_He |
---|
1980 | if(abs(in_u) < kTube_ri) |
---|
1981 | d_He = 2 * sqrt( kTube_ri^2 - in_u^2 ) |
---|
1982 | else |
---|
1983 | d_He = 0 |
---|
1984 | endif |
---|
1985 | |
---|
1986 | integrand = T_sh*exp(-kSig_ss*lambda*d_ss/cos(th_y))*( 1-exp(-kSig_8b_He*lambda*d_He/cos(th_y)) ) |
---|
1987 | |
---|
1988 | return(integrand) |
---|
1989 | end |
---|
1990 | |
---|
1991 | // |
---|
1992 | // Tube efficiency + shadowing |
---|
1993 | // |
---|
1994 | // function to generate the table for interpolation |
---|
1995 | // |
---|
1996 | // table is generated for a specific wavelength and normalized to eff(lam,0,0) |
---|
1997 | // |
---|
1998 | // below 24 deg (theta_x), there is no shadowing, so the table rows are all identical |
---|
1999 | // |
---|
2000 | // Only one table is stored, and the wavelength of that table is stored in the wave note |
---|
2001 | // -- detector correction checks the note, and recalculates the table if needed |
---|
2002 | // (calculation takes approx 5 seconds) |
---|
2003 | // |
---|
2004 | Function V_TubeShadowEfficiencyTables_oneLam(lambda) |
---|
2005 | Variable lambda |
---|
2006 | |
---|
2007 | // storage location for tables |
---|
2008 | SetDataFolder root:Packages:NIST:VSANS:Globals:Efficiency |
---|
2009 | |
---|
2010 | //make waves that will be filed with the scattering angles and the result of the calculation |
---|
2011 | // |
---|
2012 | |
---|
2013 | //// fill arrays with the scattering angles theta_x and theta_y |
---|
2014 | // 0 < x < 50 |
---|
2015 | // 0 < y < 50 |
---|
2016 | |
---|
2017 | // *** the definitions of x and y for the T/B panels is flipped so that x is always lateral WRT the tubes |
---|
2018 | // and y is always along the length of the tubes |
---|
2019 | |
---|
2020 | Variable ii,jj,numx,numy,dx,dy,cos_th,arg,tmp,normVal |
---|
2021 | numx = 25 |
---|
2022 | numy = numx |
---|
2023 | |
---|
2024 | Make/O/D/N=(numx,numy) eff |
---|
2025 | Make/O/D/N=(numx) theta_x, theta_y,eff_with_shadow,lam_cos |
---|
2026 | |
---|
2027 | SetScale x 0,(numx*2)/360*2*pi,"", eff |
---|
2028 | SetScale y 0,(numy*2)/360*2*pi,"", eff |
---|
2029 | |
---|
2030 | Note/K eff // clear the note |
---|
2031 | Note eff "LAMBDA="+num2str(lambda) |
---|
2032 | |
---|
2033 | // theta_x = p*2 |
---|
2034 | theta_y = p *2 // value range from 0->45, changes if you change numx |
---|
2035 | |
---|
2036 | //convert degrees to radians |
---|
2037 | // theta_x = theta_x/360*2*pi |
---|
2038 | theta_y = theta_y/360*2*pi |
---|
2039 | |
---|
2040 | // Make/O/D/N=12 lam_wave |
---|
2041 | // lam_wave = {0.5,0.7,1,1.5,2,3,4,6,8,10,15,20} |
---|
2042 | |
---|
2043 | // Make/O/D/N=(12*numx) eff_withX_to_interp,lam_cos_theta_y |
---|
2044 | // eff_withX_to_interp=0 |
---|
2045 | // lam_cos_theta_y=0 |
---|
2046 | |
---|
2047 | Make/O/D/N=3 pWave |
---|
2048 | pWave[0] = lambda |
---|
2049 | |
---|
2050 | |
---|
2051 | for(ii=0 ;ii<numx;ii+=1) |
---|
2052 | |
---|
2053 | for(jj=0;jj<numx;jj+=1) |
---|
2054 | |
---|
2055 | pWave[1] = indexToScale(eff,ii,0) //set theta x |
---|
2056 | pWave[2] = indexToScale(eff,jj,1) //set theta y |
---|
2057 | |
---|
2058 | eff_with_shadow[jj] = Integrate1D(V_Efficiency_Integral,-kTube_ri,kTube_ri,2,0,pWave) // adaptive Gaussian quadrature |
---|
2059 | eff_with_shadow[jj] /= (2*kTube_ri) |
---|
2060 | |
---|
2061 | eff[ii][jj] = eff_with_shadow[jj] |
---|
2062 | endfor |
---|
2063 | |
---|
2064 | //eff[ii][] = eff_with_shadow[q] |
---|
2065 | endfor |
---|
2066 | |
---|
2067 | lam_cos = lambda/cos(theta_y) |
---|
2068 | |
---|
2069 | Sort lam_cos,eff_with_shadow,lam_cos |
---|
2070 | |
---|
2071 | // |
---|
2072 | ////// // value for normalization at current wavelength |
---|
2073 | pWave[0] = lambda |
---|
2074 | pWave[1] = 0 |
---|
2075 | pWave[2] = 0 |
---|
2076 | //// |
---|
2077 | normVal = Integrate1D(V_Efficiency_Integral,-kTube_ri,kTube_ri,2,0,pWave) |
---|
2078 | normVal /= (2*kTube_ri) |
---|
2079 | // |
---|
2080 | // print normVal |
---|
2081 | // |
---|
2082 | eff_with_shadow /= normVal // eff(lam,th_x,th_y) / eff(lam,0,0) |
---|
2083 | |
---|
2084 | eff /= normVal |
---|
2085 | |
---|
2086 | // TODO |
---|
2087 | // - clean up after I'm satisfied computations are correct |
---|
2088 | // KillWaves/Z tmp_theta,tmp_dist,tmp_err,lat_err |
---|
2089 | |
---|
2090 | SetDataFolder root: |
---|
2091 | return(0) |
---|
2092 | end |
---|
2093 | |
---|
2094 | |
---|
2095 | |
---|
2096 | // |
---|
2097 | // Tube efficiency + shadowing |
---|
2098 | // |
---|
2099 | // |
---|
2100 | // TESTING function to generate the tables for interpolation |
---|
2101 | // and various combinations of the corrections for plotting |
---|
2102 | // |
---|
2103 | Function V_TubeShadowEfficiencyTables_withX() |
---|
2104 | |
---|
2105 | |
---|
2106 | Variable lambda |
---|
2107 | lambda = 6 |
---|
2108 | |
---|
2109 | Variable theta_val=3 //the single theta_x value that is used |
---|
2110 | |
---|
2111 | // TODO |
---|
2112 | // -- better storage location for tables |
---|
2113 | // bad place for now... |
---|
2114 | SetDataFolder root: |
---|
2115 | |
---|
2116 | //make waves that will be filed with the scattering angles and the result of the calculation |
---|
2117 | // |
---|
2118 | |
---|
2119 | //// fill arrays with the scattering angles theta_x and theta_y |
---|
2120 | // 0 < x < 50 |
---|
2121 | // 0 < y < 50 |
---|
2122 | |
---|
2123 | // *** the definitions of x and y for the T/B panels is flipped so that x is always lateral WRT the tubes |
---|
2124 | // and y is always along the length of the tubes |
---|
2125 | |
---|
2126 | Variable ii,jj,numx,numy,dx,dy,cos_th,arg,tmp,normVal |
---|
2127 | numx = 10 |
---|
2128 | numy = 10 |
---|
2129 | |
---|
2130 | // Make/O/D/N=(numx,numy) eff |
---|
2131 | Make/O/D/N=(numx) theta_x, theta_y,eff_with_shadow,lam_cos |
---|
2132 | |
---|
2133 | theta_x = p*5 |
---|
2134 | theta_y = p*5 // value range from 0->45, changes if you change numx |
---|
2135 | |
---|
2136 | //convert degrees to radians |
---|
2137 | theta_x = theta_x/360*2*pi |
---|
2138 | theta_y = theta_y/360*2*pi |
---|
2139 | |
---|
2140 | Make/O/D/N=12 lam_wave |
---|
2141 | lam_wave = {0.5,0.7,1,1.5,2,3,4,6,8,10,15,20} |
---|
2142 | |
---|
2143 | Make/O/D/N=(12*numx) eff_withX_to_interp,lam_cos_theta_y |
---|
2144 | eff_withX_to_interp=0 |
---|
2145 | lam_cos_theta_y=0 |
---|
2146 | |
---|
2147 | Make/O/D/N=3 pWave |
---|
2148 | |
---|
2149 | for(jj=0;jj<12;jj+=1) |
---|
2150 | |
---|
2151 | pWave[0] = lam_wave[jj] |
---|
2152 | |
---|
2153 | for(ii=0 ;ii<numx;ii+=1) |
---|
2154 | |
---|
2155 | pWave[1] = theta_val/360*2*pi //set theta x to any value |
---|
2156 | pWave[2] = theta_y[ii] |
---|
2157 | |
---|
2158 | eff_with_shadow[ii] = Integrate1D(V_Efficiency_Integral,-kTube_ri,kTube_ri,2,0,pWave) // adaptive Gaussian quadrature |
---|
2159 | eff_with_shadow[ii] /= (2*kTube_ri) |
---|
2160 | |
---|
2161 | endfor |
---|
2162 | |
---|
2163 | lam_cos = lam_wave[jj]/cos(theta_y) |
---|
2164 | |
---|
2165 | // messy indexing for the concatentation |
---|
2166 | lam_cos_theta_y[jj*numx,(jj+1)*numx-1] = lam_cos[p-jj*numx] |
---|
2167 | eff_withX_to_interp[jj*numx,(jj+1)*numx-1] = eff_with_shadow[p-jj*numx] |
---|
2168 | |
---|
2169 | endfor |
---|
2170 | |
---|
2171 | Sort lam_cos_theta_y,eff_withX_to_interp,lam_cos_theta_y |
---|
2172 | |
---|
2173 | // |
---|
2174 | //////// // value for normalization at what wavelength??? |
---|
2175 | // pWave[0] = 6 |
---|
2176 | // pWave[1] = 0 |
---|
2177 | // pWave[2] = 0 |
---|
2178 | ////// |
---|
2179 | // normVal = Integrate1D(V_Efficiency_Integral,-kTube_ri,kTube_ri,2,0,pWave) |
---|
2180 | // normVal /= (2*kTube_ri) |
---|
2181 | //// |
---|
2182 | // print normVal |
---|
2183 | //// |
---|
2184 | // eff_withX_to_interp /= normVal // eff(lam,th_x,th_y) / eff(lam,0,0) |
---|
2185 | |
---|
2186 | // TODO |
---|
2187 | // - clean up after I'm satisfied computations are correct |
---|
2188 | // KillWaves/Z tmp_theta,tmp_dist,tmp_err,lat_err |
---|
2189 | |
---|
2190 | return(0) |
---|
2191 | end |
---|
2192 | |
---|
2193 | |
---|
2194 | |
---|
2195 | ///////////// |
---|
2196 | |
---|
2197 | // |
---|
2198 | // |
---|
2199 | // testing function to calculate the correction for the attenuation |
---|
2200 | // of the scattered beam by windows downstream of the sample |
---|
2201 | // (the back window of the sample block, the Si window) |
---|
2202 | // |
---|
2203 | // For implementation, this function could be made identical |
---|
2204 | // to the large angle transmission correction, since the math is |
---|
2205 | // identical - only the Tw value is different (and should ideally be |
---|
2206 | // quite close to 1). With Tw near 1, this would be a few percent correction |
---|
2207 | // at the largest scattering angles. |
---|
2208 | // |
---|
2209 | // |
---|
2210 | Function V_WindowTransmission(tw) |
---|
2211 | Variable tw |
---|
2212 | |
---|
2213 | Make/O/D/N=100 theta,method1,method2,arg |
---|
2214 | |
---|
2215 | theta = p/2 |
---|
2216 | theta = theta/360*2*pi //convert to radians |
---|
2217 | |
---|
2218 | // method1 = exp( -ln(tw)/cos(theta) )/tw |
---|
2219 | |
---|
2220 | Variable tau |
---|
2221 | tau = -ln(tw) |
---|
2222 | arg = (1-cos(theta))/cos(theta) |
---|
2223 | |
---|
2224 | if(tau < 0.01) |
---|
2225 | method2 = 1 - 0.5*tau*arg |
---|
2226 | else |
---|
2227 | method2 = ( 1 - exp(-tau*arg) )/(tau*arg) |
---|
2228 | endif |
---|
2229 | |
---|
2230 | return(0) |
---|
2231 | end |
---|
2232 | |
---|
2233 | |
---|
2234 | // |
---|
2235 | // Large angle transmission correction for the downstream window |
---|
2236 | // |
---|
2237 | // DIVIDE the intensity by this correction to get the right answer |
---|
2238 | // |
---|
2239 | // -- this is a duplication of the math for the large angle |
---|
2240 | // sample tranmission correction. Same situation, but now the |
---|
2241 | // scattered neutrons are attenuated by whatever windows are |
---|
2242 | // downstream of the scattering event. |
---|
2243 | // (the back window of the sample block, the Si window) |
---|
2244 | // |
---|
2245 | // For implementation, this function is made identical |
---|
2246 | // to the large angle transmission correction, since the math is |
---|
2247 | // identical - only the Tw value is different (and should ideally be |
---|
2248 | // quite close to 1). With Tw near 1, this would be a few percent correction |
---|
2249 | // at the largest scattering angles. |
---|
2250 | // |
---|
2251 | // |
---|
2252 | Function V_DownstreamWindowTransmission(w,w_err,fname,detStr,destPath) |
---|
2253 | Wave w,w_err |
---|
2254 | String fname,detStr,destPath |
---|
2255 | |
---|
2256 | Variable sdd,xCtr,yCtr,uval |
---|
2257 | |
---|
2258 | // get all of the geometry information |
---|
2259 | // orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
2260 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
2261 | |
---|
2262 | // this is ctr in mm |
---|
2263 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
2264 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
2265 | |
---|
2266 | // get the value of the overall transmission of the downstream components |
---|
2267 | // + error if available. |
---|
2268 | // trans = V_getSampleTransmission(fname) |
---|
2269 | // trans_err = V_getSampleTransError(fname) |
---|
2270 | // TODO -- HARD WIRED values, need to set a global or find a place in the header (instrument block?) (reduction?) |
---|
2271 | // currently globals are forced to one in WorkFolderUtils.ipf as the correction is done |
---|
2272 | NVAR trans = root:Packages:NIST:VSANS:Globals:gDownstreamWinTrans |
---|
2273 | NVAR trans_err = root:Packages:NIST:VSANS:Globals:gDownstreamWinTransErr |
---|
2274 | |
---|
2275 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
2276 | |
---|
2277 | Wave data_realDistX = data_realDistX |
---|
2278 | Wave data_realDistY = data_realDistY |
---|
2279 | |
---|
2280 | Duplicate/O w dwt_corr,tmp_theta,tmp_dist,dwt_err,tmp_err //in the current df |
---|
2281 | |
---|
2282 | //// calculate the scattering angle |
---|
2283 | // dx = (distX - xctr) //delta x in mm |
---|
2284 | // dy = (distY - yctr) //delta y in mm |
---|
2285 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
2286 | |
---|
2287 | tmp_dist /= 10 // convert mm to cm |
---|
2288 | // sdd is in [cm] |
---|
2289 | |
---|
2290 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the scattering angle |
---|
2291 | |
---|
2292 | Variable ii,jj,numx,numy,dx,dy,cos_th,arg,tmp |
---|
2293 | numx = DimSize(tmp_theta,0) |
---|
2294 | numy = DimSize(tmp_theta,1) |
---|
2295 | |
---|
2296 | |
---|
2297 | //optical thickness |
---|
2298 | uval = -ln(trans) //use natural logarithm |
---|
2299 | |
---|
2300 | for(ii=0 ;ii<numx;ii+=1) |
---|
2301 | for(jj=0;jj<numy;jj+=1) |
---|
2302 | |
---|
2303 | cos_th = cos(tmp_theta[ii][jj]) |
---|
2304 | arg = (1-cos_th)/cos_th |
---|
2305 | |
---|
2306 | // a Taylor series around uval*arg=0 only needs about 4 terms for very good accuracy |
---|
2307 | // correction= 1 - 0.5*uval*arg + (uval*arg)^2/6 - (uval*arg)^3/24 + (uval*arg)^4/120 |
---|
2308 | // OR |
---|
2309 | if((uval<0.01) || (cos_th>0.99)) |
---|
2310 | //small arg, approx correction |
---|
2311 | dwt_corr[ii][jj] = 1-0.5*uval*arg |
---|
2312 | else |
---|
2313 | //large arg, exact correction |
---|
2314 | dwt_corr[ii][jj] = (1-exp(-uval*arg))/(uval*arg) |
---|
2315 | endif |
---|
2316 | |
---|
2317 | // (DONE) |
---|
2318 | // x- properly calculate and apply the 2D error propagation |
---|
2319 | if(trans == 1) |
---|
2320 | dwt_err[ii][jj] = 0 //no correction, no error |
---|
2321 | else |
---|
2322 | //sigT, calculated from the Taylor expansion |
---|
2323 | tmp = (1/trans)*(arg/2-arg^2/3*uval+arg^3/8*uval^2-arg^4/30*uval^3) |
---|
2324 | tmp *= tmp |
---|
2325 | tmp *= trans_err^2 |
---|
2326 | tmp = sqrt(tmp) //sigT |
---|
2327 | |
---|
2328 | dwt_err[ii][jj] = tmp |
---|
2329 | endif |
---|
2330 | |
---|
2331 | endfor |
---|
2332 | endfor |
---|
2333 | |
---|
2334 | // Here it is! Apply the correction to the intensity (divide -- to get the proper correction) |
---|
2335 | w /= dwt_corr |
---|
2336 | |
---|
2337 | // relative errors add in quadrature to the current 2D error |
---|
2338 | tmp_err = (w_err/dwt_corr)^2 + (dwt_err/dwt_corr)^2*w*w/dwt_corr^2 |
---|
2339 | tmp_err = sqrt(tmp_err) |
---|
2340 | |
---|
2341 | w_err = tmp_err |
---|
2342 | |
---|
2343 | // DONE x- clean up after I'm satisfied computations are correct |
---|
2344 | KillWaves/Z tmp_theta,tmp_dist,tmp_err,dwt_err |
---|
2345 | |
---|
2346 | return(0) |
---|
2347 | end |
---|
2348 | |
---|