1 | #pragma rtGlobals=3 // Use modern global access method and strict wave access. |
---|
2 | #pragma version=1.0 |
---|
3 | #pragma IgorVersion=6.1 |
---|
4 | |
---|
5 | |
---|
6 | |
---|
7 | // |
---|
8 | // functions to apply corrections to the detector panels |
---|
9 | // |
---|
10 | // these are meant to be called by the procedures that convert "raw" data to |
---|
11 | // "adjusted" or corrected data sets |
---|
12 | // |
---|
13 | // may be relocated in the future |
---|
14 | // |
---|
15 | |
---|
16 | |
---|
17 | |
---|
18 | // |
---|
19 | // detector dead time |
---|
20 | // |
---|
21 | // input is the data array (N tubes x M pixels) |
---|
22 | // input of N x 1 array of dead time values |
---|
23 | // |
---|
24 | // output is the corrected counts in data, overwriting the input data |
---|
25 | // |
---|
26 | // Note that the equation in Roe (eqn 2.15, p. 63) looks different, but it is really the |
---|
27 | // same old equation, just written in a more complex form. |
---|
28 | // |
---|
29 | // (DONE) |
---|
30 | // x- verify the direction of the tubes and indexing |
---|
31 | // x- decide on the appropriate functional form for the tubes |
---|
32 | // x- need count time as input |
---|
33 | // x- be sure I'm working in the right data folder (all waves are passed in) |
---|
34 | // x- clean up when done |
---|
35 | // x- calculate + return the error contribution? |
---|
36 | // x- verify the error propagation |
---|
37 | Function V_DeadTimeCorrectionTubes(dataW,data_errW,dtW,ctTime) |
---|
38 | Wave dataW,data_errW,dtW |
---|
39 | Variable ctTime |
---|
40 | |
---|
41 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
42 | String orientation |
---|
43 | Variable dimX,dimY |
---|
44 | dimX = DimSize(dataW,0) |
---|
45 | dimY = DimSize(dataw,1) |
---|
46 | if(dimX > dimY) |
---|
47 | orientation = "horizontal" |
---|
48 | else |
---|
49 | orientation = "vertical" |
---|
50 | endif |
---|
51 | |
---|
52 | // sum the counts in each tube and divide by time for total cr per tube |
---|
53 | Variable npt |
---|
54 | |
---|
55 | if(cmpstr(orientation,"vertical")==0) |
---|
56 | // this is data dimensioned as (Ntubes,Npix) |
---|
57 | |
---|
58 | MatrixOp/O sumTubes = sumRows(dataW) // n x 1 result |
---|
59 | sumTubes /= ctTime //now count rate per tube |
---|
60 | |
---|
61 | dataW[][] = dataW[p][q]/(1-sumTubes[p]*dtW[p]) //correct the data |
---|
62 | data_errW[][] = data_errW[p][q]/(1-sumTubes[p]*dtW[p]) // propagate the error wave |
---|
63 | |
---|
64 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
65 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
66 | |
---|
67 | MatrixOp/O sumTubes = sumCols(dataW) // 1 x m result |
---|
68 | sumTubes /= ctTime |
---|
69 | |
---|
70 | dataW[][] = dataW[p][q]/(1-sumTubes[q]*dtW[q]) |
---|
71 | data_errW[][] = data_errW[p][q]/(1-sumTubes[q]*dtW[q]) |
---|
72 | |
---|
73 | else |
---|
74 | DoAlert 0,"Orientation not correctly passed in DeadTimeCorrectionTubes(). No correction done." |
---|
75 | endif |
---|
76 | |
---|
77 | return(0) |
---|
78 | end |
---|
79 | |
---|
80 | // test function |
---|
81 | Function V_testDTCor() |
---|
82 | |
---|
83 | String detStr = "" |
---|
84 | String fname = "RAW" |
---|
85 | Variable ctTime |
---|
86 | |
---|
87 | detStr = "FR" |
---|
88 | Wave w = V_getDetectorDataW(fname,detStr) |
---|
89 | Wave w_err = V_getDetectorDataErrW(fname,detStr) |
---|
90 | Wave w_dt = V_getDetector_deadtime(fname,detStr) |
---|
91 | |
---|
92 | ctTime = V_getCount_time(fname) |
---|
93 | |
---|
94 | // ctTime = 10 |
---|
95 | V_DeadTimeCorrectionTubes(w,w_err,w_dt,ctTime) |
---|
96 | |
---|
97 | End |
---|
98 | |
---|
99 | |
---|
100 | // |
---|
101 | // Non-linear data correction |
---|
102 | // |
---|
103 | // DOES NOT modify the data, only calculates the spatial relationship |
---|
104 | // |
---|
105 | // input is the data array (N tubes x M pixels) |
---|
106 | // input of N x M array of quadratic coefficients |
---|
107 | // |
---|
108 | // output is wave of corrected real space distance corresponding to each pixel of the data |
---|
109 | // |
---|
110 | // |
---|
111 | // (DONE) |
---|
112 | // x- UNITS!!!! currently this is mm, which certainly doesn't match anything else!!! |
---|
113 | // |
---|
114 | // x- verify the direction of the tubes and indexing |
---|
115 | // x- be sure I'm working in the right data folder (it is passed in, and the full path is used) |
---|
116 | // x- clean up when done |
---|
117 | // x- calculate + return the error contribution? (there is none for this operation) |
---|
118 | // x- do I want this to return a wave? (no, default names are generated) |
---|
119 | // x- do I need to write a separate function that returns the distance wave for later calculations? |
---|
120 | // x- do I want to make the distance array 3D to keep the x and y dims together? Calculate them all right now? |
---|
121 | // x- what else do I need to pass to the function? (fname=folder? detStr?) |
---|
122 | // y- (yes,see below) need a separate block or function to handle "B" detector which will be ? different |
---|
123 | // |
---|
124 | // |
---|
125 | Function V_NonLinearCorrection(fname,dataW,coefW,tube_width,detStr,destPath) |
---|
126 | String fname //can also be a folder such as "RAW" |
---|
127 | Wave dataW,coefW |
---|
128 | Variable tube_width |
---|
129 | String detStr,destPath |
---|
130 | |
---|
131 | |
---|
132 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
133 | String orientation |
---|
134 | Variable dimX,dimY |
---|
135 | dimX = DimSize(dataW,0) |
---|
136 | dimY = DimSize(dataW,1) |
---|
137 | if(dimX > dimY) |
---|
138 | orientation = "horizontal" |
---|
139 | else |
---|
140 | orientation = "vertical" |
---|
141 | endif |
---|
142 | |
---|
143 | // make a wave of the same dimensions, in the same data folder for the distance |
---|
144 | // ?? or a 3D wave? |
---|
145 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
146 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
147 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
148 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
149 | |
---|
150 | // then per tube, do the quadratic calculation to get the real space distance along the tube |
---|
151 | // the distance perpendicular to the tube is n*(8.4mm) per tube index |
---|
152 | |
---|
153 | // TODO |
---|
154 | // -- GAP IS HARD-WIRED as a single constant value (there really are 4 values) |
---|
155 | Variable offset,gap |
---|
156 | |
---|
157 | // kPanelTouchingGap is in mm |
---|
158 | // the gap is added to the RIGHT and TOP panels ONLY |
---|
159 | // TODO -- replace with V_getDet_panel_gap(fname,detStr) once it is added to the file |
---|
160 | gap = kPanelTouchingGap |
---|
161 | |
---|
162 | if(cmpstr(orientation,"vertical")==0) |
---|
163 | // this is data dimensioned as (Ntubes,Npix) |
---|
164 | |
---|
165 | // adjust the x postion based on the beam center being nominally (0,0) in units of cm, not pixels |
---|
166 | if(cmpstr(fname,"VCALC")== 0 ) |
---|
167 | offset = VCALC_getPanelSeparation(detStr) |
---|
168 | offset *= 10 // convert to units of mm |
---|
169 | offset /= 2 // 1/2 the total separation |
---|
170 | if(cmpstr("L",detStr[1]) == 0) |
---|
171 | offset *= -1 //negative value for L |
---|
172 | endif |
---|
173 | else |
---|
174 | //normal case |
---|
175 | offset = V_getDet_LateralOffset(fname,detStr) |
---|
176 | offset *= 10 //convert cm to mm |
---|
177 | endif |
---|
178 | |
---|
179 | // calculation is in mm, not cm |
---|
180 | // offset will be a negative value for the L panel, and positive for the R panel |
---|
181 | if(kBCTR_CM) |
---|
182 | if(cmpstr("L",detStr[1]) == 0) |
---|
183 | // data_realDistX[][] = offset - (dimX - p)*tube_width // TODO should this be dimX-1-p = 47-p? |
---|
184 | data_realDistX[][] = offset - (dimX - p)*tube_width - gap/2 // TODO should this be dimX-1-p = 47-p? |
---|
185 | else |
---|
186 | // right |
---|
187 | // data_realDistX[][] = tube_width*(p+1) + offset + gap //add to the Right det, |
---|
188 | data_realDistX[][] = tube_width*(p+1) + offset + gap/2 //add to the Right det |
---|
189 | endif |
---|
190 | else |
---|
191 | data_realDistX[][] = tube_width*(p) |
---|
192 | endif |
---|
193 | data_realDistY[][] = coefW[0][p] + coefW[1][p]*q + coefW[2][p]*q*q |
---|
194 | |
---|
195 | |
---|
196 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
197 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
198 | data_realDistY[][] = tube_width*q |
---|
199 | |
---|
200 | if(cmpstr(fname,"VCALC")== 0 ) |
---|
201 | offset = VCALC_getPanelSeparation(detStr) |
---|
202 | offset *= 10 // convert to units of mm |
---|
203 | offset /= 2 // 1/2 the total separation |
---|
204 | if(cmpstr("B",detStr[1]) == 0) |
---|
205 | offset *= -1 // negative value for Bottom det |
---|
206 | endif |
---|
207 | else |
---|
208 | //normal case |
---|
209 | offset = V_getDet_VerticalOffset(fname,detStr) |
---|
210 | offset *= 10 //convert cm to mm |
---|
211 | endif |
---|
212 | |
---|
213 | if(kBCTR_CM) |
---|
214 | if(cmpstr("T",detStr[1]) == 0) |
---|
215 | // data_realDistY[][] = tube_width*(q+1) + offset + gap |
---|
216 | data_realDistY[][] = tube_width*(q+1) + offset + gap/2 |
---|
217 | else |
---|
218 | // bottom |
---|
219 | // data_realDistY[][] = offset - (dimY - q)*tube_width // TODO should this be dimY-1-q = 47-q? |
---|
220 | data_realDistY[][] = offset - (dimY - q)*tube_width - gap/2 // TODO should this be dimY-1-q = 47-q? |
---|
221 | endif |
---|
222 | else |
---|
223 | data_realDistY[][] = tube_width*(q) |
---|
224 | endif |
---|
225 | data_realDistX[][] = coefW[0][q] + coefW[1][q]*p + coefW[2][q]*p*p |
---|
226 | |
---|
227 | else |
---|
228 | DoAlert 0,"Orientation not correctly passed in NonLinearCorrection(). No correction done." |
---|
229 | return(0) |
---|
230 | endif |
---|
231 | |
---|
232 | return(0) |
---|
233 | end |
---|
234 | |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | // TODO: |
---|
239 | // -- the cal_x and y coefficients are totally fake |
---|
240 | // -- the wave assignment may not be correct.. so beware |
---|
241 | // |
---|
242 | // |
---|
243 | Function V_NonLinearCorrection_B(folder,dataW,cal_x,cal_y,detStr,destPath) |
---|
244 | String folder |
---|
245 | Wave dataW,cal_x,cal_y |
---|
246 | String detStr,destPath |
---|
247 | |
---|
248 | if(cmpstr(detStr,"B") != 0) |
---|
249 | return(0) |
---|
250 | endif |
---|
251 | |
---|
252 | // do I count on the orientation as an input, or do I just figure it out on my own? |
---|
253 | Variable dimX,dimY |
---|
254 | |
---|
255 | // Wave dataW = V_getDetectorDataW(folder,detStr) |
---|
256 | |
---|
257 | dimX = DimSize(dataW,0) |
---|
258 | dimY = DimSize(dataW,1) |
---|
259 | |
---|
260 | // make a wave of the same dimensions, in the same data folder for the distance |
---|
261 | // ?? or a 3D wave? |
---|
262 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
263 | Make/O/D/N=(dimX,dimY) $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
264 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
265 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
266 | |
---|
267 | |
---|
268 | // Wave cal_x = V_getDet_cal_x(folder,detStr) |
---|
269 | // Wave cal_y = V_getDet_cal_y(folder,detStr) |
---|
270 | |
---|
271 | data_realDistX[][] = cal_x[0]*p |
---|
272 | data_realDistY[][] = cal_y[0]*q |
---|
273 | |
---|
274 | return(0) |
---|
275 | end |
---|
276 | |
---|
277 | |
---|
278 | // |
---|
279 | // |
---|
280 | // TODO |
---|
281 | // -- VERIFY the calculations |
---|
282 | // -- verify where this needs to be done (if the beam center is changed) |
---|
283 | // -- then the q-calculation needs to be re-done |
---|
284 | // -- the position along the tube length is referenced to tube[0], for no particular reason |
---|
285 | // It may be better to take an average? but [0] is an ASSUMPTION |
---|
286 | // -- distance along tube is simple interpolation, or do I use the coefficients to |
---|
287 | // calculate the actual value |
---|
288 | // |
---|
289 | // -- distance in the lateral direction is based on tube width, which is a fixed parameter |
---|
290 | // |
---|
291 | // |
---|
292 | Function V_ConvertBeamCtr_to_mm(folder,detStr,destPath) |
---|
293 | String folder,detStr,destPath |
---|
294 | |
---|
295 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
296 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
297 | |
---|
298 | String orientation |
---|
299 | Variable dimX,dimY,xCtr,yCtr |
---|
300 | dimX = DimSize(data_realDistX,0) |
---|
301 | dimY = DimSize(data_realDistX,1) |
---|
302 | if(dimX > dimY) |
---|
303 | orientation = "horizontal" |
---|
304 | else |
---|
305 | orientation = "vertical" |
---|
306 | endif |
---|
307 | |
---|
308 | xCtr = V_getDet_beam_center_x(folder,detStr) |
---|
309 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
310 | |
---|
311 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
312 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
313 | WAVE x_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
314 | WAVE y_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
315 | |
---|
316 | Variable tube_width = V_getDet_tubeWidth(folder,detStr) |
---|
317 | |
---|
318 | // |
---|
319 | if(cmpstr(orientation,"vertical")==0) |
---|
320 | // this is data dimensioned as (Ntubes,Npix) |
---|
321 | // data_realDistX[][] = tube_width*p |
---|
322 | // data_realDistY[][] = coefW[0][p] + coefW[1][p]*q + coefW[2][p]*q*q |
---|
323 | x_mm[0] = tube_width*xCtr |
---|
324 | y_mm[0] = data_realDistY[0][yCtr] |
---|
325 | else |
---|
326 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
327 | // data_realDistX[][] = coefW[0][q] + coefW[1][q]*p + coefW[2][q]*p*p |
---|
328 | // data_realDistY[][] = tube_width*q |
---|
329 | x_mm[0] = data_realDistX[xCtr][0] |
---|
330 | y_mm[0] = tube_width*yCtr |
---|
331 | endif |
---|
332 | |
---|
333 | return(0) |
---|
334 | end |
---|
335 | |
---|
336 | // |
---|
337 | // |
---|
338 | // (DONE) |
---|
339 | // x- VERIFY the calculations |
---|
340 | // x- verify where this needs to be done (if the beam center is changed) |
---|
341 | // x- then the q-calculation needs to be re-done |
---|
342 | // x- the position along the tube length is referenced to tube[0], for no particular reason |
---|
343 | // It may be better to take an average? but [0] is an ASSUMPTION |
---|
344 | // x- distance along tube is simple interpolation |
---|
345 | // |
---|
346 | // x- distance in the lateral direction is based on tube width, which is a fixed parameter |
---|
347 | // |
---|
348 | // the value in pixels is written to the local data folder, NOT to disk (it is recalculated as needed) |
---|
349 | // |
---|
350 | Function V_ConvertBeamCtr_to_pix(folder,detStr,destPath) |
---|
351 | String folder,detStr,destPath |
---|
352 | |
---|
353 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
354 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
355 | |
---|
356 | String orientation |
---|
357 | Variable dimX,dimY,xCtr,yCtr |
---|
358 | dimX = DimSize(data_realDistX,0) |
---|
359 | dimY = DimSize(data_realDistX,1) |
---|
360 | if(dimX > dimY) |
---|
361 | orientation = "horizontal" |
---|
362 | else |
---|
363 | orientation = "vertical" |
---|
364 | endif |
---|
365 | |
---|
366 | xCtr = V_getDet_beam_center_x(folder,detStr) //these are in cm |
---|
367 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
368 | |
---|
369 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
370 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
371 | WAVE x_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_pix") |
---|
372 | WAVE y_pix = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_pix") |
---|
373 | |
---|
374 | Variable tube_width = V_getDet_tubeWidth(folder,detStr) |
---|
375 | |
---|
376 | variable edge,delta |
---|
377 | Variable gap = kPanelTouchingGap // TODO: -- replace with V_getDet_panel_gap(fname,detStr) |
---|
378 | |
---|
379 | // |
---|
380 | if(cmpstr(orientation,"vertical")==0) |
---|
381 | // this is data dimensioned as (Ntubes,Npix) |
---|
382 | |
---|
383 | if(kBCTR_CM) |
---|
384 | if(cmpstr("L",detStr[1]) == 0) |
---|
385 | edge = data_realDistX[47][0] //tube 47 |
---|
386 | delta = abs(xCtr*10 - edge) |
---|
387 | x_pix[0] = dimX-1 + delta/tube_width |
---|
388 | else |
---|
389 | // R panel |
---|
390 | edge = data_realDistX[0][0] |
---|
391 | delta = abs(xCtr*10 - edge + gap) |
---|
392 | x_pix[0] = -delta/tube_width //since the left edge of the R panel is pixel 0 |
---|
393 | endif |
---|
394 | endif |
---|
395 | |
---|
396 | Make/O/D/N=(dimY) tmpTube |
---|
397 | tmpTube = data_RealDistY[0][p] |
---|
398 | FindLevel /P/Q tmpTube, yCtr |
---|
399 | |
---|
400 | y_pix[0] = V_levelX |
---|
401 | KillWaves/Z tmpTube |
---|
402 | else |
---|
403 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
404 | |
---|
405 | if(kBCTR_CM) |
---|
406 | if(cmpstr("T",detStr[1]) == 0) |
---|
407 | edge = data_realDistY[0][0] //tube 0 |
---|
408 | delta = abs(yCtr*10 - edge + gap) |
---|
409 | y_pix[0] = -delta/tube_width //since the bottom edge of the T panel is pixel 0 |
---|
410 | else |
---|
411 | // FM(B) panel |
---|
412 | edge = data_realDistY[0][47] //y tube 47 |
---|
413 | delta = abs(yCtr*10 - edge) |
---|
414 | y_pix[0] = dimY-1 + delta/tube_width //since the top edge of the B panels is pixel 47 |
---|
415 | endif |
---|
416 | endif |
---|
417 | |
---|
418 | |
---|
419 | Make/O/D/N=(dimX) tmpTube |
---|
420 | tmpTube = data_RealDistX[p][0] |
---|
421 | FindLevel /P/Q tmpTube, xCtr |
---|
422 | |
---|
423 | x_pix[0] = V_levelX |
---|
424 | KillWaves/Z tmpTube |
---|
425 | |
---|
426 | |
---|
427 | endif |
---|
428 | |
---|
429 | return(0) |
---|
430 | end |
---|
431 | |
---|
432 | // |
---|
433 | // |
---|
434 | // TODO |
---|
435 | // -- VERIFY the calculations |
---|
436 | // -- verify where this needs to be done (if the beam center is changed) |
---|
437 | // -- then the q-calculation needs to be re-done |
---|
438 | // |
---|
439 | // -- not much is known about the "B" detector, so this |
---|
440 | // all hinges on the non-linear corrections being done correctly for that detector |
---|
441 | // |
---|
442 | // |
---|
443 | Function V_ConvertBeamCtr_to_mmB(folder,detStr,destPath) |
---|
444 | String folder,detStr,destPath |
---|
445 | |
---|
446 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
447 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
448 | |
---|
449 | Variable xCtr,yCtr |
---|
450 | xCtr = V_getDet_beam_center_x(folder,detStr) |
---|
451 | yCtr = V_getDet_beam_center_y(folder,detStr) |
---|
452 | |
---|
453 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
454 | Make/O/D/N=1 $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
455 | WAVE x_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_x_mm") |
---|
456 | WAVE y_mm = $(destPath + ":entry:instrument:detector_"+detStr+":beam_center_y_mm") |
---|
457 | |
---|
458 | x_mm[0] = data_realDistX[xCtr][0] |
---|
459 | y_mm[0] = data_realDistY[0][yCtr] |
---|
460 | |
---|
461 | return(0) |
---|
462 | end |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | |
---|
467 | |
---|
468 | |
---|
469 | ///// |
---|
470 | // |
---|
471 | // non-linear corrections to the tube pixels |
---|
472 | // - returns the distance in mm (although this may change) |
---|
473 | // |
---|
474 | // c0,c1,c2,pix |
---|
475 | // c0-c2 are the fit coefficients |
---|
476 | // pix is the test pixel |
---|
477 | // |
---|
478 | // returns the distance in mm (relative to ctr pixel) |
---|
479 | // ctr is the center pixel, as defined when fitting to quadratic was done |
---|
480 | // |
---|
481 | Function V_TubePixel_to_mm(c0,c1,c2,pix) |
---|
482 | Variable c0,c1,c2,pix |
---|
483 | |
---|
484 | Variable dist |
---|
485 | dist = c0 + c1*pix + c2*pix*pix |
---|
486 | |
---|
487 | return(dist) |
---|
488 | End |
---|
489 | // |
---|
490 | //// |
---|
491 | |
---|
492 | |
---|
493 | // |
---|
494 | // TESTING ONLY |
---|
495 | Proc V_MakeFakeCalibrationWaves() |
---|
496 | // make these in the RAW data folder, before converting to a work folder |
---|
497 | // - then they will be "found" by get() |
---|
498 | // -- only for the tube, not the Back det |
---|
499 | |
---|
500 | // DoAlert 0, "re-do this and do a better job of filling the fake calibration data" |
---|
501 | |
---|
502 | DoAlert 0, "Calibration waves are read in from the data file" |
---|
503 | |
---|
504 | // V_fMakeFakeCalibrationWaves() |
---|
505 | End |
---|
506 | |
---|
507 | |
---|
508 | |
---|
509 | // |
---|
510 | // TESTING ONLY |
---|
511 | // |
---|
512 | // orientation does not matter, there are 48 tubes in each bank |
---|
513 | // so dimension (3,48) for everything. |
---|
514 | // |
---|
515 | // -- but the orientation does indicate TB vs LR, which has implications for |
---|
516 | // the (fictional) dimension of the pixel along the tube axis, at least as far |
---|
517 | // as for making the fake coefficients. |
---|
518 | // |
---|
519 | Function V_fMakeFakeCalibrationWaves() |
---|
520 | |
---|
521 | Variable ii,pixSize |
---|
522 | String detStr,fname="RAW",orientation |
---|
523 | |
---|
524 | for(ii=0;ii<ItemsInList(ksDetectorListNoB);ii+=1) |
---|
525 | detStr = StringFromList(ii, ksDetectorListNoB, ";") |
---|
526 | // Wave w = V_getDetectorDataW(fname,detStr) |
---|
527 | Make/O/D/N=(3,48) $("root:Packages:NIST:VSANS:RAW:entry:instrument:detector_"+detStr+":spatial_calibration") |
---|
528 | Wave calib = $("root:Packages:NIST:VSANS:RAW:entry:instrument:detector_"+detStr+":spatial_calibration") |
---|
529 | // !!!! this overwrites what is there |
---|
530 | |
---|
531 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
532 | if(cmpstr(orientation,"vertical")==0) |
---|
533 | // this is vertical tube data dimensioned as (Ntubes,Npix) |
---|
534 | pixSize = 8.4 //V_getDet_y_pixel_size(fname,detStr) |
---|
535 | |
---|
536 | elseif(cmpstr(orientation,"horizontal")==0) |
---|
537 | // this is data (horizontal) dimensioned as (Npix,Ntubes) |
---|
538 | pixSize = 4 //V_getDet_x_pixel_size(fname,detStr) |
---|
539 | |
---|
540 | else |
---|
541 | DoAlert 0,"Orientation not correctly passed in NonLinearCorrection(). No correction done." |
---|
542 | endif |
---|
543 | |
---|
544 | calib[0][] = -(128/2)*pixSize //approx (n/2)*pixSixe |
---|
545 | calib[1][] = pixSize |
---|
546 | calib[2][] = 2e-4 |
---|
547 | |
---|
548 | endfor |
---|
549 | |
---|
550 | // now fake calibration for "B" |
---|
551 | Wave cal_x = V_getDet_cal_x("RAW","B") |
---|
552 | Wave cal_y = V_getDet_cal_y("RAW","B") |
---|
553 | |
---|
554 | cal_x = 1 // mm, ignore the other 2 values |
---|
555 | cal_y = 1 // mm |
---|
556 | return(0) |
---|
557 | End |
---|
558 | |
---|
559 | // |
---|
560 | // (DONE) |
---|
561 | // x- MUST VERIFY the definition of SDD and how (if) setback is written to the data files |
---|
562 | // x- currently I'm assuming that the SDD is the "nominal" value which is correct for the |
---|
563 | // L/R panels, but is not correct for the T/B panels (must add in the setback) |
---|
564 | // |
---|
565 | // |
---|
566 | // |
---|
567 | // data_realDistX, Y must be previously generated from running NonLinearCorrection() |
---|
568 | // |
---|
569 | // call with: |
---|
570 | // fname as the WORK folder, "RAW" |
---|
571 | // detStr = detector String, "FL" |
---|
572 | // destPath = path to destination WORK folder ("root:Packages:NIST:VSANS:"+folder) |
---|
573 | // |
---|
574 | Function V_Detector_CalcQVals(fname,detStr,destPath) |
---|
575 | String fname,detStr,destPath |
---|
576 | |
---|
577 | String orientation |
---|
578 | Variable xCtr,yCtr,lambda,sdd |
---|
579 | |
---|
580 | // get all of the geometry information |
---|
581 | orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
582 | |
---|
583 | |
---|
584 | sdd = V_getDet_ActualDistance(fname,detStr) //sdd derived, including setback [cm] |
---|
585 | |
---|
586 | // this is the ctr in pixels --xx-- (now it is in cm!) |
---|
587 | // xCtr = V_getDet_beam_center_x(fname,detStr) |
---|
588 | // yCtr = V_getDet_beam_center_y(fname,detStr) |
---|
589 | // this is ctr in mm |
---|
590 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
591 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
592 | lambda = V_getWavelength(fname) |
---|
593 | Wave data_realDistX = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistX") |
---|
594 | Wave data_realDistY = $(destPath + ":entry:instrument:detector_"+detStr+":data_realDistY") |
---|
595 | |
---|
596 | // make the new waves |
---|
597 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qTot_"+detStr) |
---|
598 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qx_"+detStr) |
---|
599 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qy_"+detStr) |
---|
600 | Duplicate/O data_realDistX $(destPath + ":entry:instrument:detector_"+detStr+":qz_"+detStr) |
---|
601 | Wave qTot = $(destPath + ":entry:instrument:detector_"+detStr+":qTot_"+detStr) |
---|
602 | Wave qx = $(destPath + ":entry:instrument:detector_"+detStr+":qx_"+detStr) |
---|
603 | Wave qy = $(destPath + ":entry:instrument:detector_"+detStr+":qy_"+detStr) |
---|
604 | Wave qz = $(destPath + ":entry:instrument:detector_"+detStr+":qz_"+detStr) |
---|
605 | |
---|
606 | // calculate all of the q-values |
---|
607 | // sdd is passed in [cm] |
---|
608 | qTot = V_CalcQval(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
609 | qx = V_CalcQX(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
610 | qy = V_CalcQY(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
611 | qz = V_CalcQZ(p,q,xCtr,yCtr,sdd,lambda,data_realDistX,data_realDistY) |
---|
612 | |
---|
613 | |
---|
614 | return(0) |
---|
615 | End |
---|
616 | |
---|
617 | |
---|
618 | //function to calculate the overall q-value, given all of the necesary trig inputs |
---|
619 | // |
---|
620 | // (DONE) |
---|
621 | // x- verify the calculation (accuracy - in all input conditions) |
---|
622 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
623 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
624 | // to each pixel |
---|
625 | // |
---|
626 | //sdd is in [cm] |
---|
627 | // distX and distY are in [mm] |
---|
628 | //wavelength is in Angstroms |
---|
629 | // |
---|
630 | //returned magnitude of Q is in 1/Angstroms |
---|
631 | // |
---|
632 | Function V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
633 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
634 | Wave distX,distY |
---|
635 | |
---|
636 | Variable dx,dy,qval,two_theta,dist |
---|
637 | |
---|
638 | |
---|
639 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
640 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
641 | dist = sqrt(dx^2 + dy^2) |
---|
642 | |
---|
643 | dist /= 10 // convert mm to cm |
---|
644 | |
---|
645 | two_theta = atan(dist/sdd) |
---|
646 | |
---|
647 | qval = 4*Pi/lam*sin(two_theta/2) |
---|
648 | |
---|
649 | return qval |
---|
650 | End |
---|
651 | |
---|
652 | //calculates just the q-value in the x-direction on the detector |
---|
653 | // (DONE) |
---|
654 | // x- verify the calculation (accuracy - in all input conditions) |
---|
655 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
656 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
657 | // to each pixel |
---|
658 | // |
---|
659 | // |
---|
660 | // this properly accounts for qz |
---|
661 | // |
---|
662 | Function V_CalcQX(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
663 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
664 | Wave distX,distY |
---|
665 | |
---|
666 | Variable qx,qval,phi,dx,dy,dist,two_theta |
---|
667 | |
---|
668 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
669 | |
---|
670 | |
---|
671 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
672 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
673 | phi = V_FindPhi(dx,dy) |
---|
674 | |
---|
675 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
676 | dist = sqrt(dx^2 + dy^2) |
---|
677 | dist /= 10 // convert mm to cm |
---|
678 | |
---|
679 | two_theta = atan(dist/sdd) |
---|
680 | |
---|
681 | qx = qval*cos(two_theta/2)*cos(phi) |
---|
682 | |
---|
683 | return qx |
---|
684 | End |
---|
685 | |
---|
686 | //calculates just the q-value in the y-direction on the detector |
---|
687 | // (DONE) |
---|
688 | // x- verify the calculation (accuracy - in all input conditions) |
---|
689 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
690 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
691 | // to each pixel |
---|
692 | // |
---|
693 | // |
---|
694 | // this properly accounts for qz |
---|
695 | // |
---|
696 | Function V_CalcQY(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
697 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
698 | Wave distX,distY |
---|
699 | |
---|
700 | Variable qy,qval,phi,dx,dy,dist,two_theta |
---|
701 | |
---|
702 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
703 | |
---|
704 | |
---|
705 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
706 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
707 | phi = V_FindPhi(dx,dy) |
---|
708 | |
---|
709 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
710 | dist = sqrt(dx^2 + dy^2) |
---|
711 | dist /= 10 // convert mm to cm |
---|
712 | |
---|
713 | two_theta = atan(dist/sdd) |
---|
714 | |
---|
715 | qy = qval*cos(two_theta/2)*sin(phi) |
---|
716 | |
---|
717 | return qy |
---|
718 | End |
---|
719 | |
---|
720 | //calculates just the q-value in the z-direction on the detector |
---|
721 | // (DONE) |
---|
722 | // x- verify the calculation (accuracy - in all input conditions) |
---|
723 | // x- verify the units of everything here, it's currently all jumbled and wrong... and repeated |
---|
724 | // x- the input data_realDistX and Y are essentially lookup tables of the real space distance corresponding |
---|
725 | // to each pixel |
---|
726 | // |
---|
727 | // not actually used for any calculations, but here for completeness if anyone asks, or for 2D data export |
---|
728 | // |
---|
729 | // this properly accounts for qz, because it is qz |
---|
730 | // |
---|
731 | Function V_CalcQZ(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
732 | Variable xaxval,yaxval,xctr,yctr,sdd,lam |
---|
733 | Wave distX,distY |
---|
734 | |
---|
735 | Variable qz,qval,phi,dx,dy,dist,two_theta |
---|
736 | |
---|
737 | qval = V_CalcQval(xaxval,yaxval,xctr,yctr,sdd,lam,distX,distY) |
---|
738 | |
---|
739 | |
---|
740 | dx = (distX[xaxval][yaxval] - xctr) //delta x in mm |
---|
741 | dy = (distY[xaxval][yaxval] - yctr) //delta y in mm |
---|
742 | |
---|
743 | //get scattering angle to project onto flat detector => Qr = qval*cos(theta) |
---|
744 | dist = sqrt(dx^2 + dy^2) |
---|
745 | dist /= 10 // convert mm to cm |
---|
746 | |
---|
747 | two_theta = atan(dist/sdd) |
---|
748 | |
---|
749 | qz = qval*sin(two_theta/2) |
---|
750 | |
---|
751 | return qz |
---|
752 | End |
---|
753 | |
---|
754 | |
---|
755 | // |
---|
756 | // (DONE) |
---|
757 | // x- VERIFY calculations |
---|
758 | // x- This is the actual solid angle per pixel, not a ratio vs. some "unit SA" |
---|
759 | // Do I just correct for the different area vs. the "nominal" central area? |
---|
760 | // x- decide how to implement - YES - directly change the data values (as was done in the past) |
---|
761 | // or (NOT done this way...use this as a weighting for when the data is binned to I(q). In the second method, 2D data |
---|
762 | // would need this to be applied before exporting) |
---|
763 | // x- do I keep a wave note indicating that this correction has been applied to the data |
---|
764 | // so that it can be "un-applied"? NO |
---|
765 | // x- do I calculate theta from geometry directly, or get it from Q (Assuming it's present?) |
---|
766 | // (YES just from geometry, since I need SDD and dx and dy values...) |
---|
767 | // |
---|
768 | // |
---|
769 | Function V_SolidAngleCorrection(w,w_err,fname,detStr,destPath) |
---|
770 | Wave w,w_err |
---|
771 | String fname,detStr,destPath |
---|
772 | |
---|
773 | Variable sdd,xCtr,yCtr,lambda |
---|
774 | |
---|
775 | // get all of the geometry information |
---|
776 | // orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
777 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
778 | |
---|
779 | |
---|
780 | // this is ctr in mm |
---|
781 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
782 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
783 | lambda = V_getWavelength(fname) |
---|
784 | |
---|
785 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
786 | |
---|
787 | Wave data_realDistX = data_realDistX |
---|
788 | Wave data_realDistY = data_realDistY |
---|
789 | |
---|
790 | Duplicate/O w solid_angle,tmp_theta,tmp_dist //in the current df |
---|
791 | |
---|
792 | //// calculate the scattering angle |
---|
793 | // dx = (distX - xctr) //delta x in mm |
---|
794 | // dy = (distY - yctr) //delta y in mm |
---|
795 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
796 | |
---|
797 | tmp_dist /= 10 // convert mm to cm |
---|
798 | // sdd is in [cm] |
---|
799 | |
---|
800 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the scattering angle |
---|
801 | |
---|
802 | Variable ii,jj,numx,numy,dx,dy |
---|
803 | numx = DimSize(tmp_theta,0) |
---|
804 | numy = DimSize(tmp_theta,1) |
---|
805 | |
---|
806 | for(ii=0 ;ii<numx;ii+=1) |
---|
807 | for(jj=0;jj<numy;jj+=1) |
---|
808 | |
---|
809 | if(ii==0) //do a forward difference if ii==0 |
---|
810 | dx = (data_realDistX[ii+1][jj] - data_realDistX[ii][jj]) //delta x for the pixel |
---|
811 | else |
---|
812 | dx = (data_realDistX[ii][jj] - data_realDistX[ii-1][jj]) //delta x for the pixel |
---|
813 | endif |
---|
814 | |
---|
815 | |
---|
816 | if(jj==0) |
---|
817 | dy = (data_realDistY[ii][jj+1] - data_realDistY[ii][jj]) //delta y for the pixel |
---|
818 | else |
---|
819 | dy = (data_realDistY[ii][jj] - data_realDistY[ii][jj-1]) //delta y for the pixel |
---|
820 | endif |
---|
821 | |
---|
822 | dx /= 10 |
---|
823 | dy /= 10 // convert mm to cm (since sdd is in cm) |
---|
824 | solid_angle[ii][jj] = dx*dy //this is in cm^2 |
---|
825 | endfor |
---|
826 | endfor |
---|
827 | |
---|
828 | // to cover up any issues w/negative dx or dy |
---|
829 | solid_angle = abs(solid_angle) |
---|
830 | |
---|
831 | // solid_angle correction |
---|
832 | // == dx*dy*cos^3/sdd^2 |
---|
833 | solid_angle *= (cos(tmp_theta))^3 |
---|
834 | solid_angle /= sdd^2 |
---|
835 | |
---|
836 | // Here it is! Apply the correction to the intensity (I divide -- to get the counts per solid angle!!) |
---|
837 | w /= solid_angle |
---|
838 | |
---|
839 | // |
---|
840 | // correctly apply the correction to the error wave (assume a perfect value?) |
---|
841 | w_err /= solid_angle // |
---|
842 | |
---|
843 | // TODO -- clean up after I'm satisfied computations are correct |
---|
844 | // KillWaves/Z tmp_theta,tmp_dist |
---|
845 | |
---|
846 | return(0) |
---|
847 | end |
---|
848 | |
---|
849 | |
---|
850 | //////////// |
---|
851 | // TODO: all of below is untested code |
---|
852 | // copied from SANS |
---|
853 | // |
---|
854 | // |
---|
855 | // NOV 2017 |
---|
856 | // Currently, this is not called from any VSANS routines. it is only referenced |
---|
857 | // from V_Add_raw_to_work(), which would add two VSANS raw data files together. This has |
---|
858 | // not yet been implemented. I am only keeping this function around to be sure that |
---|
859 | // if/when V_Add_raw_to_work() is implemented, all of the functionality of V_DetCorr() is |
---|
860 | // properly duplicated. |
---|
861 | // |
---|
862 | // |
---|
863 | // |
---|
864 | //performs solid angle and non-linear detector corrections to raw data as it is "added" to a work folder |
---|
865 | //function is called by Raw_to_work() and Add_raw_to_work() functions |
---|
866 | //works on the actual data array, assumes that is is already on LINEAR scale |
---|
867 | // |
---|
868 | Function V_DetCorr(data,data_err,realsread,doEfficiency,doTrans) |
---|
869 | Wave data,data_err,realsread |
---|
870 | Variable doEfficiency,doTrans |
---|
871 | |
---|
872 | DoAlert 0,"This has not yet been updated for VSANS" |
---|
873 | |
---|
874 | Variable xcenter,ycenter,x0,y0,sx,sx3,sy,sy3,xx0,yy0 |
---|
875 | Variable ii,jj,dtdist,dtdis2 |
---|
876 | Variable xi,xd,yd,rad,ratio,domega,xy |
---|
877 | Variable lambda,trans,trans_err,lat_err,tmp_err,lat_corr |
---|
878 | |
---|
879 | // Print "...doing jacobian and non-linear corrections" |
---|
880 | |
---|
881 | NVAR pixelsX = root:myGlobals:gNPixelsX |
---|
882 | NVAR pixelsY = root:myGlobals:gNPixelsY |
---|
883 | |
---|
884 | //set up values to send to auxiliary trig functions |
---|
885 | xcenter = pixelsX/2 + 0.5 // == 64.5 for 128x128 Ordela |
---|
886 | ycenter = pixelsY/2 + 0.5 // == 64.5 for 128x128 Ordela |
---|
887 | |
---|
888 | x0 = realsread[16] |
---|
889 | y0 = realsread[17] |
---|
890 | sx = realsread[10] |
---|
891 | sx3 = realsread[11] |
---|
892 | sy = realsread[13] |
---|
893 | sy3 = realsread[14] |
---|
894 | |
---|
895 | dtdist = 1000*realsread[18] //sdd in mm |
---|
896 | dtdis2 = dtdist^2 |
---|
897 | |
---|
898 | lambda = realsRead[26] |
---|
899 | trans = RealsRead[4] |
---|
900 | trans_err = RealsRead[41] //new, March 2011 |
---|
901 | |
---|
902 | |
---|
903 | //waves to contain repeated function calls |
---|
904 | Make/O/N=(pixelsX) fyy,xx,yy //Assumes square detector !!! |
---|
905 | ii=0 |
---|
906 | do |
---|
907 | xi = ii |
---|
908 | // fyy[ii] = dc_fy(ii+1,sy,sy3,ycenter) |
---|
909 | // xx[ii] = dc_fxn(ii+1,sx,sx3,xcenter) |
---|
910 | // yy[ii] = dc_fym(ii+1,sy,sy3,ycenter) |
---|
911 | ii+=1 |
---|
912 | while(ii<pixelsX) |
---|
913 | |
---|
914 | Make/O/N=(pixelsX,pixelsY) SolidAngle // testing only |
---|
915 | |
---|
916 | ii=0 |
---|
917 | do |
---|
918 | xi = ii |
---|
919 | // xd = dc_fx(ii+1,sx,sx3,xcenter)-xx0 |
---|
920 | jj=0 |
---|
921 | do |
---|
922 | yd = fyy[jj]-yy0 |
---|
923 | //rad is the distance of pixel ij from the sample |
---|
924 | //domega is the ratio of the solid angle of pixel ij versus center pixel |
---|
925 | // product xy = 1 for a detector with a linear spatial response (modern Ordela) |
---|
926 | // solid angle calculated, dW^3 >=1, so multiply data to raise measured values to correct values. |
---|
927 | rad = sqrt(dtdis2 + xd^2 + yd^2) |
---|
928 | domega = rad/dtdist |
---|
929 | ratio = domega^3 |
---|
930 | xy = xx[ii]*yy[jj] |
---|
931 | |
---|
932 | data[ii][jj] *= xy*ratio |
---|
933 | |
---|
934 | solidAngle[ii][jj] = xy*ratio //testing only |
---|
935 | data_err[ii][jj] *= xy*ratio //error propagation assumes that SA and Jacobian are exact, so simply scale error |
---|
936 | |
---|
937 | |
---|
938 | // correction factor for detector efficiency JBG memo det_eff_cor2.doc 3/20/07 |
---|
939 | // correction inserted 11/2007 SRK |
---|
940 | // large angle detector efficiency is >= 1 and will "bump up" the measured value at the highest angles |
---|
941 | // so divide here to get the correct answer (5/22/08 SRK) |
---|
942 | if(doEfficiency) |
---|
943 | // data[ii][jj] /= DetEffCorr(lambda,dtdist,xd,yd) |
---|
944 | // data_err[ii][jj] /= DetEffCorr(lambda,dtdist,xd,yd) |
---|
945 | // solidAngle[ii][jj] /= DetEffCorr(lambda,dtdist,xd,yd) //testing only |
---|
946 | endif |
---|
947 | |
---|
948 | // large angle transmission calculation is <= 1 and will "bump down" the measured value at the highest angles |
---|
949 | // so divide here to get the correct answer |
---|
950 | if(doTrans) |
---|
951 | |
---|
952 | if(trans<0.1 && ii==0 && jj==0) |
---|
953 | Print "***transmission is less than 0.1*** and is a significant correction" |
---|
954 | endif |
---|
955 | |
---|
956 | if(trans==0) |
---|
957 | if(ii==0 && jj==0) |
---|
958 | Print "***transmission is ZERO*** and has been reset to 1.0 for the averaging calculation" |
---|
959 | endif |
---|
960 | trans = 1 |
---|
961 | endif |
---|
962 | |
---|
963 | // pass in the transmission error, and the error in the correction is returned as the last parameter |
---|
964 | |
---|
965 | // lat_corr = V_LargeAngleTransmissionCorr(trans,dtdist,xd,yd,trans_err,lat_err) //moved from 1D avg SRK 11/2007 |
---|
966 | |
---|
967 | data[ii][jj] /= lat_corr //divide by the correction factor |
---|
968 | // |
---|
969 | // |
---|
970 | // |
---|
971 | // relative errors add in quadrature |
---|
972 | tmp_err = (data_err[ii][jj]/lat_corr)^2 + (lat_err/lat_corr)^2*data[ii][jj]*data[ii][jj]/lat_corr^2 |
---|
973 | tmp_err = sqrt(tmp_err) |
---|
974 | |
---|
975 | data_err[ii][jj] = tmp_err |
---|
976 | |
---|
977 | // solidAngle[ii][jj] = lat_err |
---|
978 | |
---|
979 | |
---|
980 | //solidAngle[ii][jj] = LargeAngleTransmissionCorr(trans,dtdist,xd,yd) //testing only |
---|
981 | endif |
---|
982 | |
---|
983 | jj+=1 |
---|
984 | while(jj<pixelsX) |
---|
985 | ii+=1 |
---|
986 | while(ii<pixelsX) |
---|
987 | |
---|
988 | //clean up waves |
---|
989 | |
---|
990 | Return(0) |
---|
991 | End |
---|
992 | |
---|
993 | |
---|
994 | // |
---|
995 | // Large angle transmission correction |
---|
996 | // |
---|
997 | // DIVIDE the intensity by this correction to get the right answer |
---|
998 | // |
---|
999 | // |
---|
1000 | // Apply the large angle transmssion correction as the data is converted to WORK |
---|
1001 | // so that whether the data is saved as 2D or 1D, the correction has properly been done. |
---|
1002 | // |
---|
1003 | // This is, however, a SAMPLE dependent calculation, not purely instrument geometry. |
---|
1004 | // |
---|
1005 | Function V_LargeAngleTransmissionCorr(w,w_err,fname,detStr,destPath) |
---|
1006 | Wave w,w_err |
---|
1007 | String fname,detStr,destPath |
---|
1008 | |
---|
1009 | Variable sdd,xCtr,yCtr,trans,trans_err,uval |
---|
1010 | |
---|
1011 | // get all of the geometry information |
---|
1012 | // orientation = V_getDet_tubeOrientation(fname,detStr) |
---|
1013 | sdd = V_getDet_ActualDistance(fname,detStr) |
---|
1014 | |
---|
1015 | // this is ctr in mm |
---|
1016 | xCtr = V_getDet_beam_center_x_mm(fname,detStr) |
---|
1017 | yCtr = V_getDet_beam_center_y_mm(fname,detStr) |
---|
1018 | trans = V_getSampleTransmission(fname) |
---|
1019 | trans_err = V_getSampleTransError(fname) |
---|
1020 | |
---|
1021 | SetDataFolder $(destPath + ":entry:instrument:detector_"+detStr) |
---|
1022 | |
---|
1023 | Wave data_realDistX = data_realDistX |
---|
1024 | Wave data_realDistY = data_realDistY |
---|
1025 | |
---|
1026 | Duplicate/O w lat_corr,tmp_theta,tmp_dist,lat_err,tmp_err //in the current df |
---|
1027 | |
---|
1028 | //// calculate the scattering angle |
---|
1029 | // dx = (distX - xctr) //delta x in mm |
---|
1030 | // dy = (distY - yctr) //delta y in mm |
---|
1031 | tmp_dist = sqrt((data_realDistX - xctr)^2 + (data_realDistY - yctr)^2) |
---|
1032 | |
---|
1033 | tmp_dist /= 10 // convert mm to cm |
---|
1034 | // sdd is in [cm] |
---|
1035 | |
---|
1036 | tmp_theta = atan(tmp_dist/sdd) //this is two_theta, the scattering angle |
---|
1037 | |
---|
1038 | Variable ii,jj,numx,numy,dx,dy,cos_th,arg,tmp |
---|
1039 | numx = DimSize(tmp_theta,0) |
---|
1040 | numy = DimSize(tmp_theta,1) |
---|
1041 | |
---|
1042 | |
---|
1043 | //optical thickness |
---|
1044 | uval = -ln(trans) //use natural logarithm |
---|
1045 | |
---|
1046 | for(ii=0 ;ii<numx;ii+=1) |
---|
1047 | for(jj=0;jj<numy;jj+=1) |
---|
1048 | |
---|
1049 | cos_th = cos(tmp_theta[ii][jj]) |
---|
1050 | arg = (1-cos_th)/cos_th |
---|
1051 | |
---|
1052 | // a Taylor series around uval*arg=0 only needs about 4 terms for very good accuracy |
---|
1053 | // correction= 1 - 0.5*uval*arg + (uval*arg)^2/6 - (uval*arg)^3/24 + (uval*arg)^4/120 |
---|
1054 | // OR |
---|
1055 | if((uval<0.01) || (cos_th>0.99)) |
---|
1056 | //small arg, approx correction |
---|
1057 | lat_corr[ii][jj] = 1-0.5*uval*arg |
---|
1058 | else |
---|
1059 | //large arg, exact correction |
---|
1060 | lat_corr[ii][jj] = (1-exp(-uval*arg))/(uval*arg) |
---|
1061 | endif |
---|
1062 | |
---|
1063 | // (DONE) |
---|
1064 | // x- properly calculate and apply the 2D error propagation |
---|
1065 | if(trans == 1) |
---|
1066 | lat_err[ii][jj] = 0 //no correction, no error |
---|
1067 | else |
---|
1068 | //sigT, calculated from the Taylor expansion |
---|
1069 | tmp = (1/trans)*(arg/2-arg^2/3*uval+arg^3/8*uval^2-arg^4/30*uval^3) |
---|
1070 | tmp *= tmp |
---|
1071 | tmp *= trans_err^2 |
---|
1072 | tmp = sqrt(tmp) //sigT |
---|
1073 | |
---|
1074 | lat_err[ii][jj] = tmp |
---|
1075 | endif |
---|
1076 | |
---|
1077 | |
---|
1078 | endfor |
---|
1079 | endfor |
---|
1080 | |
---|
1081 | |
---|
1082 | |
---|
1083 | // Here it is! Apply the correction to the intensity (divide -- to get the proper correction) |
---|
1084 | w /= lat_corr |
---|
1085 | |
---|
1086 | // relative errors add in quadrature to the current 2D error |
---|
1087 | tmp_err = (w_err/lat_corr)^2 + (lat_err/lat_corr)^2*w*w/lat_corr^2 |
---|
1088 | tmp_err = sqrt(tmp_err) |
---|
1089 | |
---|
1090 | w_err = tmp_err |
---|
1091 | |
---|
1092 | |
---|
1093 | // TODO -- clean up after I'm satisfied computations are correct |
---|
1094 | KillWaves/Z tmp_theta,tmp_dist,tmp_err,lat_err |
---|
1095 | |
---|
1096 | return(0) |
---|
1097 | end |
---|
1098 | |
---|
1099 | |
---|
1100 | // |
---|
1101 | // TODO: |
---|
1102 | // -- DoAlert 0,"This has not yet been updated for VSANS" |
---|
1103 | // |
---|
1104 | //test procedure, not called anymore |
---|
1105 | Proc V_AbsoluteScaling(type,c0,c1,c2,c3,c4,c5,I_err) |
---|
1106 | String type |
---|
1107 | Variable c0=1,c1=0.1,c2=0.95,c3=0.1,c4=1,c5=32.0,I_err=0.32 |
---|
1108 | Prompt type,"WORK data type",popup,"CAL;COR;SAM" |
---|
1109 | Prompt c0, "Sample Transmission" |
---|
1110 | Prompt c1, "Sample Thickness (cm)" |
---|
1111 | Prompt c2, "Standard Transmission" |
---|
1112 | Prompt c3, "Standard Thickness (cm)" |
---|
1113 | Prompt c4, "I(0) from standard fit (normalized to 1E8 monitor cts)" |
---|
1114 | Prompt c5, "Standard Cross-Section (cm-1)" |
---|
1115 | Prompt I_err, "error in I(q=0) (one std dev)" |
---|
1116 | |
---|
1117 | Variable err |
---|
1118 | //call the function to do the math |
---|
1119 | //data from "type" will be scaled and deposited in ABS |
---|
1120 | err = V_Absolute_Scale(type,c0,c1,c2,c3,c4,c5,I_err) |
---|
1121 | |
---|
1122 | if(err) |
---|
1123 | Abort "Error in V_Absolute_Scale()" |
---|
1124 | endif |
---|
1125 | |
---|
1126 | //contents are always dumped to ABS |
---|
1127 | type = "ABS" |
---|
1128 | |
---|
1129 | //need to update the display with "data" from the correct dataFolder |
---|
1130 | //reset the current display type to "type" |
---|
1131 | SVAR gCurDispType = root:Packages:NIST:VSANS:Globals:gCurDispType |
---|
1132 | gCurDispType = Type |
---|
1133 | |
---|
1134 | V_UpdateDisplayInformation(Type) |
---|
1135 | |
---|
1136 | End |
---|
1137 | |
---|
1138 | // |
---|
1139 | // |
---|
1140 | // kappa comes in as s_izero, so be sure to use 1/kappa_err |
---|
1141 | // |
---|
1142 | //convert the "type" data to absolute scale using the given standard information |
---|
1143 | //s_ is the standard |
---|
1144 | //w_ is the "work" file |
---|
1145 | //both are work files and should already be normalized to 10^8 monitor counts |
---|
1146 | Function V_Absolute_Scale(type,w_trans,w_thick,s_trans,s_thick,s_izero,s_cross,kappa_err) |
---|
1147 | String type |
---|
1148 | Variable w_trans,w_thick,s_trans,s_thick,s_izero,s_cross,kappa_err |
---|
1149 | |
---|
1150 | |
---|
1151 | Variable defmon = 1e8,w_moncount,s1,s2,s3,s4 |
---|
1152 | Variable scale,trans_err |
---|
1153 | Variable err,ii |
---|
1154 | String detStr |
---|
1155 | |
---|
1156 | // be sure that the starting data exists |
---|
1157 | err = V_WorkDataExists(type) |
---|
1158 | if(err==1) |
---|
1159 | return(err) |
---|
1160 | endif |
---|
1161 | |
---|
1162 | //copy from current dir (type) to ABS |
---|
1163 | V_CopyHDFToWorkFolder(type,"ABS") |
---|
1164 | |
---|
1165 | // TODO: -- which monitor to use? Here, I think it should already be normalized to 10^8 |
---|
1166 | // |
---|
1167 | // w_moncount = V_getMonitorCount(type) //monitor count in "type" |
---|
1168 | |
---|
1169 | w_moncount = V_getBeamMonNormData(type) |
---|
1170 | |
---|
1171 | |
---|
1172 | if(w_moncount == 0) |
---|
1173 | //zero monitor counts will give divide by zero --- |
---|
1174 | DoAlert 0,"Total monitor count in data file is zero. No rescaling of data" |
---|
1175 | Return(1) //report error |
---|
1176 | Endif |
---|
1177 | |
---|
1178 | //calculate scale factor |
---|
1179 | s1 = defmon/w_moncount // monitor count (s1 should be 1) |
---|
1180 | s2 = s_thick/w_thick |
---|
1181 | s3 = s_trans/w_trans |
---|
1182 | s4 = s_cross/s_izero |
---|
1183 | scale = s1*s2*s3*s4 |
---|
1184 | |
---|
1185 | trans_err = V_getSampleTransError(type) |
---|
1186 | |
---|
1187 | // kappa comes in as s_izero, so be sure to use 1/kappa_err |
---|
1188 | |
---|
1189 | // and now loop through all of the detectors |
---|
1190 | //do the actual absolute scaling here, modifying the data in ABS |
---|
1191 | for(ii=0;ii<ItemsInList(ksDetectorListAll);ii+=1) |
---|
1192 | detStr = StringFromList(ii, ksDetectorListAll, ";") |
---|
1193 | Wave data = V_getDetectorDataW("ABS",detStr) |
---|
1194 | Wave data_err = V_getDetectorDataErrW("ABS",detStr) |
---|
1195 | |
---|
1196 | data *= s1*s2*s3*s4 |
---|
1197 | data_err = sqrt(scale^2*data_err^2 + scale^2*data^2*(kappa_err^2/s_izero^2 +trans_err^2/w_trans^2)) |
---|
1198 | endfor |
---|
1199 | |
---|
1200 | //********* 15APR02 |
---|
1201 | // DO NOT correct for atenuators here - the COR step already does this, putting all of the data one equal |
---|
1202 | // footing (zero atten) before doing the subtraction. |
---|
1203 | |
---|
1204 | Return (0) //no error |
---|
1205 | End |
---|
1206 | |
---|
1207 | |
---|
1208 | // |
---|
1209 | // TODO: |
---|
1210 | // -- DoAlert 0,"This has not yet been updated for VSANS" |
---|
1211 | // |
---|
1212 | // |
---|
1213 | // match the attenuation of the RAW data to the "type" data |
---|
1214 | // so that they can be properly added |
---|
1215 | // |
---|
1216 | // are the attenuator numbers the same? if so exit |
---|
1217 | // |
---|
1218 | // if not, find the attenuator number for type |
---|
1219 | // - find both attenuation factors |
---|
1220 | // |
---|
1221 | // rescale the raw data to match the ratio of the two attenuation factors |
---|
1222 | // -- adjust the detector count (rw) |
---|
1223 | // -- the linear data |
---|
1224 | // |
---|
1225 | // |
---|
1226 | Function V_Adjust_RAW_Attenuation(type) |
---|
1227 | String type |
---|
1228 | |
---|
1229 | DoAlert 0,"This has not yet been updated for VSANS" |
---|
1230 | |
---|
1231 | WAVE rw=$("root:Packages:NIST:RAW:realsread") |
---|
1232 | WAVE linear_data=$("root:Packages:NIST:RAW:linear_data") |
---|
1233 | WAVE data=$("root:Packages:NIST:RAW:data") |
---|
1234 | WAVE data_err=$("root:Packages:NIST:RAW:linear_data_error") |
---|
1235 | WAVE/T tw = $("root:Packages:NIST:RAW:textRead") |
---|
1236 | |
---|
1237 | WAVE dest_reals=$("root:Packages:NIST:"+type+":realsread") |
---|
1238 | |
---|
1239 | Variable dest_atten,raw_atten,tol |
---|
1240 | Variable lambda,raw_atten_err,raw_AttenFactor,dest_attenFactor,dest_atten_err |
---|
1241 | String fileStr |
---|
1242 | |
---|
1243 | dest_atten = dest_reals[3] |
---|
1244 | raw_atten = rw[3] |
---|
1245 | |
---|
1246 | tol = 0.1 // within 0.1 atten units is OK |
---|
1247 | if(abs(dest_atten - raw_atten) < tol ) |
---|
1248 | return(0) |
---|
1249 | endif |
---|
1250 | |
---|
1251 | fileStr = tw[3] |
---|
1252 | lambda = rw[26] |
---|
1253 | // TODO access correct values |
---|
1254 | raw_AttenFactor = 1//AttenuationFactor(fileStr,lambda,raw_atten,raw_atten_err) |
---|
1255 | dest_AttenFactor = 1//AttenuationFactor(fileStr,lambda,dest_atten,dest_atten_err) |
---|
1256 | |
---|
1257 | rw[2] *= dest_AttenFactor/raw_AttenFactor |
---|
1258 | linear_data *= dest_AttenFactor/raw_AttenFactor |
---|
1259 | |
---|
1260 | // to keep "data" and linear_data in sync |
---|
1261 | data = linear_data |
---|
1262 | |
---|
1263 | return(0) |
---|
1264 | End |
---|
1265 | |
---|
1266 | // |
---|
1267 | // testing procedure, called from a menu selection |
---|
1268 | // |
---|
1269 | Proc V_DIV_a_Workfile(type) |
---|
1270 | String type |
---|
1271 | Prompt type,"WORK data type",popup,"SAM;EMP;BGD;ADJ;" |
---|
1272 | |
---|
1273 | //macro will take whatever is in SELECTED folder and DIVide it by the current |
---|
1274 | //contents of the DIV folder - the function will check for existence |
---|
1275 | //before proceeding |
---|
1276 | |
---|
1277 | Abort "This has not yet been updated for VSANS" |
---|
1278 | |
---|
1279 | Variable err |
---|
1280 | err = V_DIVCorrection(type) //returns err = 1 if data doesn't exist in specified folders |
---|
1281 | |
---|
1282 | if(err) |
---|
1283 | Abort "error in V_DIVCorrection()" |
---|
1284 | endif |
---|
1285 | |
---|
1286 | //contents are NOT always dumped to CAL, but are in the new type folder |
---|
1287 | |
---|
1288 | String newTitle = "WORK_"+type |
---|
1289 | DoWindow/F VSANS_Data |
---|
1290 | DoWindow/T VSANS_Data, newTitle |
---|
1291 | KillStrings/Z newTitle |
---|
1292 | |
---|
1293 | //need to update the display with "data" from the correct dataFolder |
---|
1294 | //reset the current displaytype to "type" |
---|
1295 | String/G root:Packages:NIST:VSANS:Globals:gCurDispType=Type |
---|
1296 | |
---|
1297 | V_UpdateDisplayInformation(type) |
---|
1298 | |
---|
1299 | End |
---|
1300 | |
---|
1301 | |
---|
1302 | // |
---|
1303 | // TODO: |
---|
1304 | // x- DoAlert 0,"This has not yet been updated for VSANS" |
---|
1305 | // -- how is the error propagation handled? Be sure it is calculated correctly when DIV is generated |
---|
1306 | // and is applied correctly here... |
---|
1307 | // |
---|
1308 | //function will divide the contents of "workType" folder with the contents of |
---|
1309 | //the DIV folder + detStr |
---|
1310 | // all data is linear scale for the calculation |
---|
1311 | // |
---|
1312 | Function V_DIVCorrection(data,data_err,detStr,workType) |
---|
1313 | Wave data,data_err |
---|
1314 | String detStr,workType |
---|
1315 | |
---|
1316 | //check for existence of data in type and DIV |
---|
1317 | // if the desired data doesn't exist, let the user know, and abort |
---|
1318 | String destPath="" |
---|
1319 | |
---|
1320 | if(WaveExists(data) == 0) |
---|
1321 | Print "The data wave does not exist in V_DIVCorrection()" |
---|
1322 | Return(1) //error condition |
---|
1323 | Endif |
---|
1324 | |
---|
1325 | //check for DIV |
---|
1326 | // if the DIV workfile doesn't exist, let the user know,and abort |
---|
1327 | |
---|
1328 | WAVE/Z div_data = $("root:Packages:NIST:VSANS:DIV:entry:instrument:detector_"+detStr+":data") |
---|
1329 | if(WaveExists(div_data) == 0) |
---|
1330 | Print "The DIV wave does not exist in V_DIVCorrection()" |
---|
1331 | Return(1) //error condition |
---|
1332 | Endif |
---|
1333 | //files exist, proceed |
---|
1334 | |
---|
1335 | data /= div_data |
---|
1336 | |
---|
1337 | // TODO: -- correct the error propagation |
---|
1338 | data_err /= div_data |
---|
1339 | |
---|
1340 | Return(0) |
---|
1341 | End |
---|
1342 | |
---|
1343 | |
---|
1344 | ////////////////////////// |
---|