1 | #pragma rtGlobals=1 // Use modern global access method. |
---|
2 | #pragma version=5.0 |
---|
3 | #pragma IgorVersion=6.1 |
---|
4 | |
---|
5 | |
---|
6 | // |
---|
7 | // resolution calculations for VSANS, under a variety of collimation conditions |
---|
8 | // |
---|
9 | // Partially converted (July 2017) |
---|
10 | // |
---|
11 | // |
---|
12 | // -- still missing a lot of physical dimensions for the SANS (1D) case |
---|
13 | // let alone anything more complex |
---|
14 | // |
---|
15 | // |
---|
16 | // SANS-like (pinhole) conditions are largely copied from the SANS calcuations |
---|
17 | // and are the traditional extra three columns |
---|
18 | // |
---|
19 | // Other conditions, such as white beam, or narrow slit mode, will likely require some |
---|
20 | // format for the resolution information that is different than the three column format. |
---|
21 | // The USANS solution of a "flag" is clunky, and depends entirely on the analysis package to |
---|
22 | // know exactly what to do. |
---|
23 | // |
---|
24 | // the 2D SANS-like resolution calculation is also expected to be similar to SANS, but is |
---|
25 | // unverified at this point (July 2017). 2D errors are also unverified. |
---|
26 | // -- Most importantly for 2D VSANS data, there is no defined output format. |
---|
27 | // |
---|
28 | |
---|
29 | |
---|
30 | // TODO: |
---|
31 | // -- some of the input geometry is hidden in other locations: |
---|
32 | // Sample Aperture to Gate Valve (cm) == /instrument/sample_aperture/distance |
---|
33 | // Sample [position] to Gate Valve (cm) = /instrument/sample_table/offset_distance |
---|
34 | // |
---|
35 | // -- the dimensions and the units for the beam stops are very odd, and what is written to the |
---|
36 | // file is not what is noted in the GUI - so verify the units that I'm actually reading. |
---|
37 | // |
---|
38 | |
---|
39 | |
---|
40 | |
---|
41 | |
---|
42 | //********************** |
---|
43 | // Resolution calculation - used by the averaging routines |
---|
44 | // to calculate the resolution function at each q-value |
---|
45 | // - the return value is not used |
---|
46 | // |
---|
47 | // equivalent to John's routine on the VAX Q_SIGMA_AVE.FOR |
---|
48 | // Incorporates eqn. 3-15 from J. Appl. Cryst. (1995) v. 28 p105-114 |
---|
49 | // |
---|
50 | // - 21 MAR 07 uses projected BS diameter on the detector |
---|
51 | // - APR 07 still need to add resolution with lenses. currently there is no flag in the |
---|
52 | // raw data header to indicate the presence of lenses. |
---|
53 | // |
---|
54 | // - Aug 07 - added input to switch calculation based on lenses (==1 if in) |
---|
55 | // |
---|
56 | // - called by CircSectAvg.ipf and RectAnnulAvg.ipf |
---|
57 | // |
---|
58 | // passed values are read from RealsRead |
---|
59 | // except DDet and apOff, which are set from globals before passing |
---|
60 | // |
---|
61 | // DDet is the detector pixel resolution |
---|
62 | // apOff is the offset between the sample aperture and the sample position |
---|
63 | // |
---|
64 | // |
---|
65 | // INPUT: |
---|
66 | // inQ = q-value [1/A] |
---|
67 | // lambda = wavelength [A] |
---|
68 | // lambdaWidth = [dimensionless] |
---|
69 | // DDet = detector pixel resolution [cm] **assumes square pixel |
---|
70 | // apOff = sample aperture to sample distance [cm] |
---|
71 | // S1 = source aperture diameter [mm] |
---|
72 | // S2 = sample aperture diameter [mm] |
---|
73 | // L1 = source to sample distance [m] |
---|
74 | // L2 = sample to detector distance [m] |
---|
75 | // BS = beam stop diameter [mm] |
---|
76 | // del_r = step size [mm] = binWidth*(mm/pixel) |
---|
77 | // usingLenses = flag for lenses = 0 if no lenses, non-zero if lenses are in-beam |
---|
78 | // |
---|
79 | // OUPUT: |
---|
80 | // SigmaQ |
---|
81 | // QBar |
---|
82 | // fSubS |
---|
83 | // |
---|
84 | // |
---|
85 | Function V_getResolution(inQ,lambda,lambdaWidth,DDet,apOff,S1,S2,L1,L2,BS,del_r,usingLenses,SigmaQ,QBar,fSubS) |
---|
86 | Variable inQ, lambda, lambdaWidth, DDet, apOff, S1, S2, L1, L2, BS, del_r,usingLenses |
---|
87 | Variable &fSubS, &QBar, &SigmaQ //these are the output quantities at the input Q value |
---|
88 | |
---|
89 | //lots of calculation variables |
---|
90 | Variable a2, q_small, lp, v_lambda, v_b, v_d, vz, yg, v_g |
---|
91 | Variable r0, delta, inc_gamma, fr, fv, rmd, v_r1, rm, v_r |
---|
92 | |
---|
93 | //Constants |
---|
94 | Variable vz_1 = 3.956e5 //velocity [cm/s] of 1 A neutron |
---|
95 | Variable g = 981.0 //gravity acceleration [cm/s^2] |
---|
96 | |
---|
97 | |
---|
98 | S1 *= 0.5*0.1 //convert to radius and [cm] |
---|
99 | S2 *= 0.5*0.1 |
---|
100 | |
---|
101 | L1 *= 100.0 // [cm] |
---|
102 | L1 -= apOff //correct the distance |
---|
103 | |
---|
104 | L2 *= 100.0 |
---|
105 | L2 += apOff |
---|
106 | del_r *= 0.1 //width of annulus, convert mm to [cm] |
---|
107 | |
---|
108 | BS *= 0.5*0.1 //nominal BS diameter passed in, convert to radius and [cm] |
---|
109 | // 21 MAR 07 SRK - use the projected BS diameter, based on a point sample aperture |
---|
110 | Variable LB |
---|
111 | LB = 20.1 + 1.61*BS //distance in cm from beamstop to anode plane (empirical) |
---|
112 | BS = bs + bs*lb/(l2-lb) //adjusted diameter of shadow from parallax |
---|
113 | |
---|
114 | //Start resolution calculation |
---|
115 | a2 = S1*L2/L1 + S2*(L1+L2)/L1 |
---|
116 | q_small = 2.0*Pi*(BS-a2)*(1.0-lambdaWidth)/(lambda*L2) |
---|
117 | lp = 1.0/( 1.0/L1 + 1.0/L2) |
---|
118 | |
---|
119 | v_lambda = lambdaWidth^2/6.0 |
---|
120 | |
---|
121 | // if(usingLenses==1) //SRK 2007 |
---|
122 | if(usingLenses != 0) //SRK 2008 allows for the possibility of different numbers of lenses in header |
---|
123 | v_b = 0.25*(S1*L2/L1)^2 +0.25*(2/3)*(lambdaWidth/lambda)^2*(S2*L2/lp)^2 //correction to 2nd term |
---|
124 | else |
---|
125 | v_b = 0.25*(S1*L2/L1)^2 +0.25*(S2*L2/lp)^2 //original form |
---|
126 | endif |
---|
127 | |
---|
128 | v_d = (DDet/2.3548)^2 + del_r^2/12.0 //the 2.3548 is a conversion from FWHM->Gauss, see http://mathworld.wolfram.com/GaussianFunction.html |
---|
129 | vz = vz_1 / lambda |
---|
130 | yg = 0.5*g*L2*(L1+L2)/vz^2 |
---|
131 | v_g = 2.0*(2.0*yg^2*v_lambda) //factor of 2 correction, B. Hammouda, 2007 |
---|
132 | |
---|
133 | r0 = L2*tan(2.0*asin(lambda*inQ/(4.0*Pi) )) |
---|
134 | delta = 0.5*(BS - r0)^2/v_d |
---|
135 | |
---|
136 | if (r0 < BS) |
---|
137 | inc_gamma=exp(gammln(1.5))*(1-gammp(1.5,delta)) |
---|
138 | else |
---|
139 | inc_gamma=exp(gammln(1.5))*(1+gammp(1.5,delta)) |
---|
140 | endif |
---|
141 | |
---|
142 | fSubS = 0.5*(1.0+erf( (r0-BS)/sqrt(2.0*v_d) ) ) |
---|
143 | if (fSubS <= 0.0) |
---|
144 | fSubS = 1.e-10 |
---|
145 | endif |
---|
146 | fr = 1.0 + sqrt(v_d)*exp(-1.0*delta) /(r0*fSubS*sqrt(2.0*Pi)) |
---|
147 | fv = inc_gamma/(fSubS*sqrt(Pi)) - r0^2*(fr-1.0)^2/v_d |
---|
148 | |
---|
149 | rmd = fr*r0 |
---|
150 | v_r1 = v_b + fv*v_d +v_g |
---|
151 | |
---|
152 | rm = rmd + 0.5*v_r1/rmd |
---|
153 | v_r = v_r1 - 0.5*(v_r1/rmd)^2 |
---|
154 | if (v_r < 0.0) |
---|
155 | v_r = 0.0 |
---|
156 | endif |
---|
157 | QBar = (4.0*Pi/lambda)*sin(0.5*atan(rm/L2)) |
---|
158 | SigmaQ = QBar*sqrt(v_r/rmd^2 +v_lambda) |
---|
159 | |
---|
160 | |
---|
161 | // more readable method for calculating the variance in Q |
---|
162 | // EXCEPT - this is calculated for Qo, NOT qBar |
---|
163 | // (otherwise, they are nearly equivalent, except for close to the beam stop) |
---|
164 | // Variable kap,a_val,a_val_l2,m_h |
---|
165 | // g = 981.0 //gravity acceleration [cm/s^2] |
---|
166 | // m_h = 252.8 // m/h [=] s/cm^2 |
---|
167 | // |
---|
168 | // kap = 2*pi/lambda |
---|
169 | // a_val = L2*(L1+L2)*g/2*(m_h)^2 |
---|
170 | // a_val_L2 = a_val/L2*1e-16 //convert 1/cm^2 to 1/A^2 |
---|
171 | // |
---|
172 | // sigmaQ = 0 |
---|
173 | // sigmaQ = 3*(S1/L1)^2 |
---|
174 | // |
---|
175 | // if(usingLenses != 0) |
---|
176 | // sigmaQ += 2*(S2/lp)^2*(lambdaWidth)^2 //2nd term w/ lenses |
---|
177 | // else |
---|
178 | // sigmaQ += 2*(S2/lp)^2 //2nd term w/ no lenses |
---|
179 | // endif |
---|
180 | // |
---|
181 | // sigmaQ += (del_r/L2)^2 |
---|
182 | // sigmaQ += 2*(r0/L2)^2*(lambdaWidth)^2 |
---|
183 | // sigmaQ += 4*(a_val_l2)^2*lambda^4*(lambdaWidth)^2 |
---|
184 | // |
---|
185 | // sigmaQ *= kap^2/12 |
---|
186 | // sigmaQ = sqrt(sigmaQ) |
---|
187 | |
---|
188 | |
---|
189 | Return (0) |
---|
190 | End |
---|
191 | |
---|
192 | |
---|
193 | // |
---|
194 | //********************** |
---|
195 | // 2D resolution function calculation - ***NOT*** in terms of X and Y |
---|
196 | // but written in terms of Parallel and perpendicular to the Q vector at each point |
---|
197 | // |
---|
198 | // -- it is more naturally written this way since the 2D function is an ellipse with its major |
---|
199 | // axis pointing in the direction of Q_parallel. Hence there is no way to properly define the |
---|
200 | // elliptical gaussian in terms of sigmaX and sigmaY |
---|
201 | // |
---|
202 | // For a full description of the gravity effect on the resolution, see: |
---|
203 | // |
---|
204 | // "The effect of gravity on the resolution of small-angle neutron diffraction peaks" |
---|
205 | // D.F.R Mildner, J.G. Barker & S.R. Kline J. Appl. Cryst. (2011). 44, 1127-1129. |
---|
206 | // [ doi:10.1107/S0021889811033322 ] |
---|
207 | // |
---|
208 | // 2/17/12 SRK |
---|
209 | // NOTE: the first 2/3 of this code is the 1D code, copied here just to have the beam stop |
---|
210 | // calculation here, if I decide to implement it. The real calculation is all at the |
---|
211 | // bottom and is quite compact |
---|
212 | // |
---|
213 | // |
---|
214 | // |
---|
215 | // |
---|
216 | // - 21 MAR 07 uses projected BS diameter on the detector |
---|
217 | // - APR 07 still need to add resolution with lenses. currently there is no flag in the |
---|
218 | // raw data header to indicate the presence of lenses. |
---|
219 | // |
---|
220 | // - Aug 07 - added input to switch calculation based on lenses (==1 if in) |
---|
221 | // |
---|
222 | // passed values are read from RealsRead |
---|
223 | // except DDet and apOff, which are set from globals before passing |
---|
224 | // |
---|
225 | // phi is the azimuthal angle, CCW from +x axis |
---|
226 | // r_dist is the real-space distance from ctr of detector to QxQy pixel location |
---|
227 | // |
---|
228 | // MAR 2011 - removed the del_r terms, they don't apply since no bining is done to the 2D data |
---|
229 | // |
---|
230 | Function get2DResolution(inQ,phi,lambda,lambdaWidth,DDet,apOff,S1,S2,L1,L2,BS,del_r,usingLenses,r_dist,SigmaQX,SigmaQY,fSubS) |
---|
231 | Variable inQ, phi,lambda, lambdaWidth, DDet, apOff, S1, S2, L1, L2, BS, del_r,usingLenses,r_dist |
---|
232 | Variable &SigmaQX,&SigmaQY,&fSubS //these are the output quantities at the input Q value |
---|
233 | |
---|
234 | //lots of calculation variables |
---|
235 | Variable a2, lp, v_lambda, v_b, v_d, vz, yg, v_g |
---|
236 | Variable r0, delta, inc_gamma, fr, fv, rmd, v_r1, rm, v_r |
---|
237 | |
---|
238 | //Constants |
---|
239 | Variable vz_1 = 3.956e5 //velocity [cm/s] of 1 A neutron |
---|
240 | Variable g = 981.0 //gravity acceleration [cm/s^2] |
---|
241 | Variable m_h = 252.8 // m/h [=] s/cm^2 |
---|
242 | |
---|
243 | |
---|
244 | S1 *= 0.5*0.1 //convert to radius and [cm] |
---|
245 | S2 *= 0.5*0.1 |
---|
246 | |
---|
247 | L1 *= 100.0 // [cm] |
---|
248 | L1 -= apOff //correct the distance |
---|
249 | |
---|
250 | L2 *= 100.0 |
---|
251 | L2 += apOff |
---|
252 | del_r *= 0.1 //width of annulus, convert mm to [cm] |
---|
253 | |
---|
254 | BS *= 0.5*0.1 //nominal BS diameter passed in, convert to radius and [cm] |
---|
255 | // 21 MAR 07 SRK - use the projected BS diameter, based on a point sample aperture |
---|
256 | Variable LB |
---|
257 | LB = 20.1 + 1.61*BS //distance in cm from beamstop to anode plane (empirical) |
---|
258 | BS = bs + bs*lb/(l2-lb) //adjusted diameter of shadow from parallax |
---|
259 | |
---|
260 | //Start resolution calculation |
---|
261 | a2 = S1*L2/L1 + S2*(L1+L2)/L1 |
---|
262 | lp = 1.0/( 1.0/L1 + 1.0/L2) |
---|
263 | |
---|
264 | v_lambda = lambdaWidth^2/6.0 |
---|
265 | |
---|
266 | // if(usingLenses==1) //SRK 2007 |
---|
267 | if(usingLenses != 0) //SRK 2008 allows for the possibility of different numbers of lenses in header |
---|
268 | v_b = 0.25*(S1*L2/L1)^2 +0.25*(2/3)*(lambdaWidth/lambda)^2*(S2*L2/lp)^2 //correction to 2nd term |
---|
269 | else |
---|
270 | v_b = 0.25*(S1*L2/L1)^2 +0.25*(S2*L2/lp)^2 //original form |
---|
271 | endif |
---|
272 | |
---|
273 | v_d = (DDet/2.3548)^2 + del_r^2/12.0 |
---|
274 | vz = vz_1 / lambda |
---|
275 | yg = 0.5*g*L2*(L1+L2)/vz^2 |
---|
276 | v_g = 2.0*(2.0*yg^2*v_lambda) //factor of 2 correction, B. Hammouda, 2007 |
---|
277 | |
---|
278 | r0 = L2*tan(2.0*asin(lambda*inQ/(4.0*Pi) )) |
---|
279 | delta = 0.5*(BS - r0)^2/v_d |
---|
280 | |
---|
281 | if (r0 < BS) |
---|
282 | inc_gamma=exp(gammln(1.5))*(1-gammp(1.5,delta)) |
---|
283 | else |
---|
284 | inc_gamma=exp(gammln(1.5))*(1+gammp(1.5,delta)) |
---|
285 | endif |
---|
286 | |
---|
287 | fSubS = 0.5*(1.0+erf( (r0-BS)/sqrt(2.0*v_d) ) ) |
---|
288 | if (fSubS <= 0.0) |
---|
289 | fSubS = 1.e-10 |
---|
290 | endif |
---|
291 | // fr = 1.0 + sqrt(v_d)*exp(-1.0*delta) /(r0*fSubS*sqrt(2.0*Pi)) |
---|
292 | // fv = inc_gamma/(fSubS*sqrt(Pi)) - r0^2*(fr-1.0)^2/v_d |
---|
293 | // |
---|
294 | // rmd = fr*r0 |
---|
295 | // v_r1 = v_b + fv*v_d +v_g |
---|
296 | // |
---|
297 | // rm = rmd + 0.5*v_r1/rmd |
---|
298 | // v_r = v_r1 - 0.5*(v_r1/rmd)^2 |
---|
299 | // if (v_r < 0.0) |
---|
300 | // v_r = 0.0 |
---|
301 | // endif |
---|
302 | |
---|
303 | Variable kap,a_val,a_val_L2,proj_DDet |
---|
304 | |
---|
305 | kap = 2*pi/lambda |
---|
306 | a_val = L2*(L1+L2)*g/2*(m_h)^2 |
---|
307 | a_val_L2 = a_val/L2*1e-16 //convert 1/cm^2 to 1/A^2 |
---|
308 | |
---|
309 | |
---|
310 | // the detector pixel is square, so correct for phi |
---|
311 | proj_DDet = DDet*cos(phi) + DDet*sin(phi) |
---|
312 | |
---|
313 | |
---|
314 | ///////// OLD - don't use --- |
---|
315 | //in terms of Q_parallel ("x") and Q_perp ("y") - this works, since parallel is in the direction of Q and I |
---|
316 | // can calculate that from the QxQy (I just need the projection) |
---|
317 | //// for test case with no gravity, set a_val = 0 |
---|
318 | //// note that gravity has no wavelength dependence. the lambda^4 cancels out. |
---|
319 | //// |
---|
320 | //// a_val = 0 |
---|
321 | //// a_val_l2 = 0 |
---|
322 | // |
---|
323 | // |
---|
324 | // // this is really sigma_Q_parallel |
---|
325 | // SigmaQX = kap*kap/12 * (3*(S1/L1)^2 + 3*(S2/LP)^2 + (proj_DDet/L2)^2 + (sin(phi))^2*8*(a_val_L2)^2*lambda^4*lambdaWidth^2) |
---|
326 | // SigmaQX += inQ*inQ*v_lambda |
---|
327 | // |
---|
328 | // //this is really sigma_Q_perpendicular |
---|
329 | // proj_DDet = DDet*sin(phi) + DDet*cos(phi) //not necessary, since DDet is the same in both X and Y directions |
---|
330 | // |
---|
331 | // SigmaQY = kap*kap/12 * (3*(S1/L1)^2 + 3*(S2/LP)^2 + (proj_DDet/L2)^2 + (cos(phi))^2*8*(a_val_L2)^2*lambda^4*lambdaWidth^2) |
---|
332 | // |
---|
333 | // SigmaQX = sqrt(SigmaQX) |
---|
334 | // SigmaQy = sqrt(SigmaQY) |
---|
335 | // |
---|
336 | |
---|
337 | ///////////////////////////////////////////////// |
---|
338 | ///// |
---|
339 | // ////// this is all new, inclusion of gravity effect into the parallel component |
---|
340 | // perpendicular component is purely geometric, no gravity component |
---|
341 | // |
---|
342 | // the shadow factor is calculated as above -so keep the above calculations, even though |
---|
343 | // most of them are redundant. |
---|
344 | // |
---|
345 | |
---|
346 | //// // |
---|
347 | Variable yg_d,acc,sdd,ssd,lambda0,DL_L,sig_l |
---|
348 | Variable var_qlx,var_qly,var_ql,qx,qy,sig_perp,sig_para, sig_para_new |
---|
349 | |
---|
350 | G = 981. //! ACCELERATION OF GRAVITY, CM/SEC^2 |
---|
351 | acc = vz_1 // 3.956E5 //! CONVERT WAVELENGTH TO VELOCITY CM/SEC |
---|
352 | SDD = L2 //1317 |
---|
353 | SSD = L1 //1627 //cm |
---|
354 | lambda0 = lambda // 15 |
---|
355 | DL_L = lambdaWidth //0.236 |
---|
356 | SIG_L = DL_L/sqrt(6) |
---|
357 | YG_d = -0.5*G*SDD*(SSD+SDD)*(LAMBDA0/acc)^2 |
---|
358 | ///// Print "DISTANCE BEAM FALLS DUE TO GRAVITY (CM) = ",YG |
---|
359 | // Print "Gravity q* = ",-2*pi/lambda0*2*yg_d/sdd |
---|
360 | |
---|
361 | sig_perp = kap*kap/12 * (3*(S1/L1)^2 + 3*(S2/LP)^2 + (proj_DDet/L2)^2) |
---|
362 | sig_perp = sqrt(sig_perp) |
---|
363 | |
---|
364 | // TODO -- not needed??? |
---|
365 | // FindQxQy(inQ,phi,qx,qy) |
---|
366 | |
---|
367 | |
---|
368 | // missing a factor of 2 here, and the form is different than the paper, so re-write |
---|
369 | // VAR_QLY = SIG_L^2 * (QY+4*PI*YG_d/(2*SDD*LAMBDA0))^2 |
---|
370 | // VAR_QLX = (SIG_L*QX)^2 |
---|
371 | // VAR_QL = VAR_QLY + VAR_QLX //! WAVELENGTH CONTRIBUTION TO VARIANCE |
---|
372 | // sig_para = (sig_perp^2 + VAR_QL)^0.5 |
---|
373 | |
---|
374 | // r_dist is passed in, [=]cm |
---|
375 | // from the paper |
---|
376 | a_val = 0.5*G*SDD*(SSD+SDD)*m_h^2 * 1e-16 //units now are cm /(A^2) |
---|
377 | |
---|
378 | var_QL = 1/6*(kap/SDD)^2*(DL_L)^2*(r_dist^2 - 4*r_dist*a_val*lambda0^2*sin(phi) + 4*a_val^2*lambda0^4) |
---|
379 | sig_para_new = (sig_perp^2 + VAR_QL)^0.5 |
---|
380 | |
---|
381 | |
---|
382 | ///// return values PBR |
---|
383 | SigmaQX = sig_para_new |
---|
384 | SigmaQy = sig_perp |
---|
385 | |
---|
386 | //// |
---|
387 | |
---|
388 | Return (0) |
---|
389 | End |
---|
390 | |
---|
391 | |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | |
---|
396 | ////////Transmission |
---|
397 | //****************** |
---|
398 | //lookup tables for attenuator transmissions |
---|
399 | // |
---|
400 | // |
---|
401 | // new calibration done June 2007, John Barker |
---|
402 | // |
---|
403 | Proc MakeNG3AttenTable() |
---|
404 | |
---|
405 | NewDataFolder/O root:myGlobals:Attenuators |
---|
406 | //do explicitly to avoid data folder problems, redundant, but it must work without fail |
---|
407 | Variable num=10 //10 needed for tables after June 2007 |
---|
408 | |
---|
409 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att0 |
---|
410 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att1 |
---|
411 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att2 |
---|
412 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att3 |
---|
413 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att4 |
---|
414 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att5 |
---|
415 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att6 |
---|
416 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att7 |
---|
417 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att8 |
---|
418 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att9 |
---|
419 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att10 |
---|
420 | |
---|
421 | // and a wave for the errors at each attenuation factor |
---|
422 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att0_err |
---|
423 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att1_err |
---|
424 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att2_err |
---|
425 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att3_err |
---|
426 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att4_err |
---|
427 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att5_err |
---|
428 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att6_err |
---|
429 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att7_err |
---|
430 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att8_err |
---|
431 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att9_err |
---|
432 | Make/O/N=(num) root:myGlobals:Attenuators:ng3att10_err |
---|
433 | |
---|
434 | |
---|
435 | //each wave has 10 elements, the transmission of att# at the wavelengths |
---|
436 | //lambda = 4,5,6,7,8,10,12,14,17,20 (4 A and 20 A are extrapolated values) |
---|
437 | Make/O/N=(num) root:myGlobals:Attenuators:ng3lambda={4,5,6,7,8,10,12,14,17,20} |
---|
438 | |
---|
439 | // new calibration done June 2007, John Barker |
---|
440 | root:myGlobals:Attenuators:ng3att0 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } |
---|
441 | root:myGlobals:Attenuators:ng3att1 = {0.444784,0.419,0.3935,0.3682,0.3492,0.3132,0.2936,0.2767,0.2477,0.22404} |
---|
442 | root:myGlobals:Attenuators:ng3att2 = {0.207506,0.1848,0.1629,0.1447,0.1292,0.1056,0.09263,0.08171,0.06656,0.0546552} |
---|
443 | root:myGlobals:Attenuators:ng3att3 = {0.092412,0.07746,0.06422,0.05379,0.04512,0.03321,0.02707,0.02237,0.01643,0.0121969} |
---|
444 | root:myGlobals:Attenuators:ng3att4 = {0.0417722,0.03302,0.02567,0.02036,0.01604,0.01067,0.00812,0.006316,0.00419,0.00282411} |
---|
445 | root:myGlobals:Attenuators:ng3att5 = {0.0187129,0.01397,0.01017,0.007591,0.005668,0.003377,0.002423,0.001771,0.001064,0.000651257} |
---|
446 | root:myGlobals:Attenuators:ng3att6 = {0.00851048,0.005984,0.004104,0.002888,0.002029,0.001098,0.0007419,0.0005141,0.000272833,0.000150624} |
---|
447 | root:myGlobals:Attenuators:ng3att7 = {0.00170757,0.001084,0.0006469,0.0004142,0.0002607,0.0001201,7.664e-05,4.06624e-05,1.77379e-05,7.30624e-06} |
---|
448 | root:myGlobals:Attenuators:ng3att8 = {0.000320057,0.0001918,0.0001025,6.085e-05,3.681e-05,1.835e-05,6.74002e-06,3.25288e-06,1.15321e-06,3.98173e-07} |
---|
449 | root:myGlobals:Attenuators:ng3att9 = {6.27682e-05,3.69e-05,1.908e-05,1.196e-05,8.738e-06,6.996e-06,6.2901e-07,2.60221e-07,7.49748e-08,2.08029e-08} |
---|
450 | root:myGlobals:Attenuators:ng3att10 = {1.40323e-05,8.51e-06,5.161e-06,4.4e-06,4.273e-06,1.88799e-07,5.87021e-08,2.08169e-08,4.8744e-09,1.08687e-09} |
---|
451 | |
---|
452 | // percent errors as measured, May 2007 values |
---|
453 | // zero error for zero attenuators, appropriate average values put in for unknown values |
---|
454 | root:myGlobals:Attenuators:ng3att0_err = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } |
---|
455 | root:myGlobals:Attenuators:ng3att1_err = {0.15,0.142,0.154,0.183,0.221,0.328,0.136,0.13,0.163,0.15} |
---|
456 | root:myGlobals:Attenuators:ng3att2_err = {0.25,0.257,0.285,0.223,0.271,0.405,0.212,0.223,0.227,0.25} |
---|
457 | root:myGlobals:Attenuators:ng3att3_err = {0.3,0.295,0.329,0.263,0.323,0.495,0.307,0.28,0.277,0.3} |
---|
458 | root:myGlobals:Attenuators:ng3att4_err = {0.35,0.331,0.374,0.303,0.379,0.598,0.367,0.322,0.33,0.35} |
---|
459 | root:myGlobals:Attenuators:ng3att5_err = {0.4,0.365,0.418,0.355,0.454,0.745,0.411,0.367,0.485,0.4} |
---|
460 | root:myGlobals:Attenuators:ng3att6_err = {0.45,0.406,0.473,0.385,0.498,0.838,0.454,0.49,0.5,0.5} |
---|
461 | root:myGlobals:Attenuators:ng3att7_err = {0.6,0.554,0.692,0.425,0.562,0.991,0.715,0.8,0.8,0.8} |
---|
462 | root:myGlobals:Attenuators:ng3att8_err = {0.7,0.705,0.927,0.503,0.691,1.27,1,1,1,1} |
---|
463 | root:myGlobals:Attenuators:ng3att9_err = {1,0.862,1.172,0.799,1.104,1.891,1.5,1.5,1.5,1.5} |
---|
464 | root:myGlobals:Attenuators:ng3att10_err = {1.5,1.054,1.435,1.354,1.742,2,2,2,2,2} |
---|
465 | |
---|
466 | |
---|
467 | End |
---|
468 | |
---|
469 | |
---|
470 | |
---|
471 | |
---|
472 | |
---|
473 | //returns the transmission of the attenuator (at NG3) given the attenuator number |
---|
474 | //which must be an integer(to select the wave) and given the wavelength. |
---|
475 | //the wavelength may be any value between 4 and 20 (A), and is interpolated |
---|
476 | //between calibrated wavelengths for a given attenuator |
---|
477 | // |
---|
478 | // Mar 2010 - abs() added to attStr to account for ICE reporting -0.0001 as an attenuator position, which truncates to "-0" |
---|
479 | Function LookupAttenNG3(lambda,attenNo,atten_err) |
---|
480 | Variable lambda, attenNo, &atten_err |
---|
481 | |
---|
482 | Variable trans |
---|
483 | String attStr="root:myGlobals:Attenuators:ng3att"+num2str(trunc(abs(attenNo))) |
---|
484 | String attErrWStr="root:myGlobals:Attenuators:ng3att"+num2str(trunc(abs(attenNo)))+"_err" |
---|
485 | String lamStr = "root:myGlobals:Attenuators:ng3lambda" |
---|
486 | |
---|
487 | if(attenNo == 0) |
---|
488 | return (1) //no attenuation, return trans == 1 |
---|
489 | endif |
---|
490 | |
---|
491 | if( (lambda < 4) || (lambda > 20 ) ) |
---|
492 | Abort "Wavelength out of calibration range (4,20). You must manually enter the absolute parameters" |
---|
493 | Endif |
---|
494 | |
---|
495 | if(!(WaveExists($attStr)) || !(WaveExists($lamStr)) || !(WaveExists($attErrWStr))) |
---|
496 | Execute "MakeNG3AttenTable()" |
---|
497 | Endif |
---|
498 | //just in case creating the tables fails.... |
---|
499 | if(!(WaveExists($attStr)) || !(WaveExists($lamStr)) ) |
---|
500 | Abort "Attenuator lookup waves could not be found. You must manually enter the absolute parameters" |
---|
501 | Endif |
---|
502 | |
---|
503 | //lookup the value by interpolating the wavelength |
---|
504 | //the attenuator must always be an integer |
---|
505 | Wave att = $attStr |
---|
506 | Wave attErrW = $attErrWStr |
---|
507 | Wave lam = $lamstr |
---|
508 | trans = interp(lambda,lam,att) |
---|
509 | atten_err = interp(lambda,lam,attErrW) |
---|
510 | |
---|
511 | // the error in the tables is % error. return the standard deviation instead |
---|
512 | atten_err = trans*atten_err/100 |
---|
513 | |
---|
514 | // Print "trans = ",trans |
---|
515 | // Print "trans err = ",atten_err |
---|
516 | |
---|
517 | return trans |
---|
518 | End |
---|
519 | |
---|
520 | |
---|
521 | |
---|
522 | |
---|
523 | // a utility function so that I can get the values from the command line |
---|
524 | // since the atten_err is PBR |
---|
525 | // |
---|
526 | Function PrintAttenuation(instr,lam,attenNo) |
---|
527 | String instr |
---|
528 | Variable lam,attenNo |
---|
529 | |
---|
530 | Variable atten_err, attenFactor |
---|
531 | |
---|
532 | // 22 FEB 2013 - not sure what changed with the writeout of ICE data files... but .... |
---|
533 | // to account for ICE occasionally writing out "3" as 2.9998, make sure I can construct |
---|
534 | // a single digit -> string "3" to identify the proper wave in the lookup table |
---|
535 | |
---|
536 | attenNo = round(attenNo) |
---|
537 | |
---|
538 | strswitch(instr) |
---|
539 | case "CGB": |
---|
540 | case "NG3": |
---|
541 | attenFactor = LookupAttenNG3(lam,attenNo,atten_err) |
---|
542 | break |
---|
543 | default: |
---|
544 | //return error? |
---|
545 | DoAlert 0, "No matching instrument -- PrintAttenuation" |
---|
546 | attenFactor=1 |
---|
547 | endswitch |
---|
548 | |
---|
549 | Print "atten, err = ", attenFactor, atten_err |
---|
550 | |
---|
551 | return(0) |
---|
552 | End |
---|
553 | |
---|
554 | |
---|
555 | // |
---|
556 | //returns the proper attenuation factor based on the instrument (NG3, NG5, or NG7) |
---|
557 | //NG5 values are taken from the NG7 tables (there is very little difference in the |
---|
558 | //values, and NG5 attenuators have not been calibrated (as of 8/01) |
---|
559 | // |
---|
560 | // filestr is passed from TextRead[3] = the default directory |
---|
561 | // lam is passed from RealsRead[26] |
---|
562 | // AttenNo is passed from ReaslRead[3] |
---|
563 | // |
---|
564 | // Attenuation factor as defined here is <= 1 |
---|
565 | // |
---|
566 | // HFIR can pass ("",1,attenuationFactor) and have this function simply |
---|
567 | // spit back the attenuationFactor (that was read into rw[3]) |
---|
568 | // |
---|
569 | // called by Correct.ipf, ProtocolAsPanel.ipf, Transmission.ipf |
---|
570 | // |
---|
571 | // |
---|
572 | // as of March 2011, returns the error (one standard deviation) in the attenuation factor as the last parameter, by reference |
---|
573 | Function AttenuationFactor(fileStr,lam,attenNo,atten_err) |
---|
574 | String fileStr |
---|
575 | Variable lam,attenNo, &atten_err |
---|
576 | |
---|
577 | Variable attenFactor=1,loc |
---|
578 | String instr=fileStr[1,3] //filestr is "[NGnSANSn] " or "[NGnSANSnn]" (11 characters total) |
---|
579 | |
---|
580 | |
---|
581 | // 22 FEB 2013 - not sure what changed with the writeout of ICE data files... but .... |
---|
582 | // to account for ICE occasionally writing out "3" as 2.9998, make sure I can construct |
---|
583 | // a single digit -> string "3" to identify the proper wave in the lookup table |
---|
584 | |
---|
585 | attenNo = round(attenNo) |
---|
586 | |
---|
587 | |
---|
588 | strswitch(instr) |
---|
589 | case "CGB": |
---|
590 | case "NG3": |
---|
591 | attenFactor = LookupAttenNG3(lam,attenNo,atten_err) |
---|
592 | break |
---|
593 | default: |
---|
594 | //return error? |
---|
595 | DoAlert 0, "No matching instrument -- PrintAttenuation" |
---|
596 | attenFactor=1 |
---|
597 | endswitch |
---|
598 | // print "instr, lambda, attenNo,attenFactor = ",instr,lam,attenNo,attenFactor |
---|
599 | return(attenFactor) |
---|
600 | End |
---|
601 | |
---|
602 | |
---|