1 | #pragma TextEncoding = "MacRoman" |
---|
2 | #pragma rtGlobals=3 // Use modern global access method and strict wave access. |
---|
3 | #pragma IgorVersion = 7.00 |
---|
4 | |
---|
5 | // |
---|
6 | // |
---|
7 | // testing routines to compare various integration methods and approximations |
---|
8 | // for calculating the resolution smearing from the white beam wavelength distribution |
---|
9 | // |
---|
10 | // none of these functions are used in the final version of the resolution smearing |
---|
11 | // for white beam or super white beam. Functions and definitions of WB and SWB are contatined |
---|
12 | // in the file: V_WhiteBeamDistribution.ipf |
---|
13 | // |
---|
14 | // |
---|
15 | // |
---|
16 | // |
---|
17 | // |
---|
18 | // IntegrateFn_N is something that I wrote (in GaussUtils) for quadrature with any number of |
---|
19 | // points (user-selected) |
---|
20 | // |
---|
21 | // 2018: |
---|
22 | // my quadrature and the built-in function are equivalent. Romberg may be useful in some cases |
---|
23 | // especially for multiple integrals. then number of points and timing can be optimized. But either |
---|
24 | // method can be used. |
---|
25 | // |
---|
26 | // answer = IntegrateFn_N(V_WB_testKernel,loLim,upLim,cw,qVals,nord) |
---|
27 | // answer_Rom_WB = Integrate_BuiltIn(cw,loLim,upLim,qVals) |
---|
28 | |
---|
29 | // using a matrix multiplication for this calculation of the white beam wavelength smearing is NOT |
---|
30 | // recommended -- the calculation is not nearly accurate enough. |
---|
31 | // |
---|
32 | // |
---|
33 | // Using my built-in quadrature routines (see V_TestWavelengthIntegral) may be of use when |
---|
34 | // writing fitting functions for all of these cases. The built-in Integrate may be limited |
---|
35 | // |
---|
36 | // NOTE: -- beware what might happen to the calculations since there is a single global string |
---|
37 | // containing the function name. |
---|
38 | // |
---|
39 | // NOTE: |
---|
40 | // -- a significant problem with using the coef waves that are used in the wrapper are that |
---|
41 | // they are set up with a dependency, so doing the WB calculation also does the "regular" |
---|
42 | // smeared calculation, doubling the time required... |
---|
43 | |
---|
44 | |
---|
45 | // |
---|
46 | // needs V_DummyFunctions for the FUNCREF to work - since it fails if I simply call the XOP |
---|
47 | // |
---|
48 | // |
---|
49 | // SANSModel_proto(w,x) is in GaussUtils_v40.ipf |
---|
50 | // |
---|
51 | // FUNCREF SANSModel_proto fcn |
---|
52 | // |
---|
53 | |
---|
54 | |
---|
55 | |
---|
56 | // call the calculation |
---|
57 | // see DoTheFitButton in Wrapper_v40.ipf |
---|
58 | // |
---|
59 | // |
---|
60 | Proc V_Calc_WB_Smearing_top() |
---|
61 | |
---|
62 | String folderStr,funcStr,coefStr |
---|
63 | |
---|
64 | ControlInfo/W=WrapperPanel popup_0 |
---|
65 | folderStr=S_Value |
---|
66 | |
---|
67 | ControlInfo/W=WrapperPanel popup_1 |
---|
68 | funcStr=S_Value |
---|
69 | |
---|
70 | ControlInfo/W=WrapperPanel popup_2 |
---|
71 | coefStr=S_Value |
---|
72 | |
---|
73 | V_DoWavelengthIntegral_top(folderStr,funcStr,coefStr) |
---|
74 | |
---|
75 | SetDataFolder root: |
---|
76 | End |
---|
77 | |
---|
78 | |
---|
79 | Proc V_Calc_WB_Smearing_mid() |
---|
80 | |
---|
81 | String folderStr,funcStr,coefStr |
---|
82 | |
---|
83 | ControlInfo/W=WrapperPanel popup_0 |
---|
84 | folderStr=S_Value |
---|
85 | |
---|
86 | ControlInfo/W=WrapperPanel popup_1 |
---|
87 | funcStr=S_Value |
---|
88 | |
---|
89 | ControlInfo/W=WrapperPanel popup_2 |
---|
90 | coefStr=S_Value |
---|
91 | |
---|
92 | V_DoWavelengthIntegral_mid(folderStr,funcStr,coefStr) |
---|
93 | |
---|
94 | SetDataFolder root: |
---|
95 | End |
---|
96 | |
---|
97 | Proc V_Calc_WB_Smearing_interp() |
---|
98 | |
---|
99 | String folderStr,funcStr,coefStr |
---|
100 | |
---|
101 | ControlInfo/W=WrapperPanel popup_0 |
---|
102 | folderStr=S_Value |
---|
103 | |
---|
104 | ControlInfo/W=WrapperPanel popup_1 |
---|
105 | funcStr=S_Value |
---|
106 | |
---|
107 | ControlInfo/W=WrapperPanel popup_2 |
---|
108 | coefStr=S_Value |
---|
109 | |
---|
110 | V_DoWavelengthIntegral_interp(folderStr,funcStr,coefStr) |
---|
111 | |
---|
112 | SetDataFolder root: |
---|
113 | End |
---|
114 | |
---|
115 | Proc V_Calc_WB_Smearing_triang() |
---|
116 | |
---|
117 | String folderStr,funcStr,coefStr |
---|
118 | |
---|
119 | ControlInfo/W=WrapperPanel popup_0 |
---|
120 | folderStr=S_Value |
---|
121 | |
---|
122 | ControlInfo/W=WrapperPanel popup_1 |
---|
123 | funcStr=S_Value |
---|
124 | |
---|
125 | ControlInfo/W=WrapperPanel popup_2 |
---|
126 | coefStr=S_Value |
---|
127 | |
---|
128 | V_DoWavelengthIntegral_triang(folderStr,funcStr,coefStr) |
---|
129 | |
---|
130 | SetDataFolder root: |
---|
131 | End |
---|
132 | |
---|
133 | |
---|
134 | |
---|
135 | // uses built-in Integrate1d() |
---|
136 | // |
---|
137 | Function V_DoWavelengthIntegral_top(folderStr,funcStr,coefStr) |
---|
138 | String folderStr,funcStr,coefStr |
---|
139 | |
---|
140 | SetDataFolder $("root:"+folderStr) |
---|
141 | |
---|
142 | // gather the input waves |
---|
143 | WAVE qVals = $(folderStr+"_q") |
---|
144 | // WAVE cw = smear_coef_BroadPeak |
---|
145 | WAVE cw = $coefStr |
---|
146 | |
---|
147 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
148 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
149 | |
---|
150 | // make a wave for the answer |
---|
151 | Duplicate/O qvals answer_Rom_WB_top |
---|
152 | |
---|
153 | // do the integration |
---|
154 | Variable loLim,upLim |
---|
155 | |
---|
156 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
157 | // using the empirical definition, "top" of the peaks |
---|
158 | loLim = 3.37/5.3 |
---|
159 | upLim = 8.25/5.3 |
---|
160 | |
---|
161 | // // using the "middle" |
---|
162 | // loLim = 3.37/5.3 |
---|
163 | // upLim = 8.37/5.3 |
---|
164 | // |
---|
165 | // // using the interpolated distribution (must change the function call) |
---|
166 | // lolim = 3/5.3 |
---|
167 | // uplim = 9/5.3 |
---|
168 | |
---|
169 | // using the "triangular" distribution (must change the function call) |
---|
170 | // loLim = 4/5.3 |
---|
171 | // upLim = 8/5.3 |
---|
172 | |
---|
173 | answer_Rom_WB_top = V_Integrate_BuiltIn_top(cw,loLim,upLim,qVals) |
---|
174 | |
---|
175 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
176 | // and is needed to normalize the integral? verify this on paper. |
---|
177 | answer_Rom_WB_top *= 5.3 |
---|
178 | |
---|
179 | // normalize the integral |
---|
180 | answer_Rom_WB_top /= 20926 // "top" of peaks |
---|
181 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
182 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
183 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
184 | |
---|
185 | // additional normalization??? |
---|
186 | answer_Rom_WB_top /= 1.05 // |
---|
187 | |
---|
188 | SetDataFolder root: |
---|
189 | |
---|
190 | return 0 |
---|
191 | End |
---|
192 | |
---|
193 | |
---|
194 | // uses built-in Integrate1d() |
---|
195 | // |
---|
196 | Function V_DoWavelengthIntegral_mid(folderStr,funcStr,coefStr) |
---|
197 | String folderStr,funcStr,coefStr |
---|
198 | |
---|
199 | SetDataFolder $("root:"+folderStr) |
---|
200 | |
---|
201 | // gather the input waves |
---|
202 | WAVE qVals = $(folderStr+"_q") |
---|
203 | // WAVE cw = smear_coef_BroadPeak |
---|
204 | WAVE cw = $coefStr |
---|
205 | |
---|
206 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
207 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
208 | |
---|
209 | // make a wave for the answer |
---|
210 | Duplicate/O qvals answer_Rom_WB_mid |
---|
211 | |
---|
212 | // do the integration |
---|
213 | Variable loLim,upLim |
---|
214 | |
---|
215 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
216 | // using the empirical definition, "top" of the peaks |
---|
217 | // loLim = 3.37/5.3 |
---|
218 | // upLim = 8.25/5.3 |
---|
219 | |
---|
220 | // // using the "middle" |
---|
221 | loLim = 3.37/5.3 |
---|
222 | upLim = 8.37/5.3 |
---|
223 | // |
---|
224 | // // using the interpolated distribution (must change the function call) |
---|
225 | // lolim = 3/5.3 |
---|
226 | // uplim = 9/5.3 |
---|
227 | |
---|
228 | // using the "triangular" distribution (must change the function call) |
---|
229 | // loLim = 4/5.3 |
---|
230 | // upLim = 8/5.3 |
---|
231 | |
---|
232 | answer_Rom_WB_mid = V_Integrate_BuiltIn_mid(cw,loLim,upLim,qVals) |
---|
233 | |
---|
234 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
235 | // and is needed to normalize the integral? verify this on paper. |
---|
236 | answer_Rom_WB_mid *= 5.3 |
---|
237 | |
---|
238 | // normalize the integral |
---|
239 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
240 | answer_Rom_WB_mid /= 19933 // "middle" of peaks |
---|
241 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
242 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
243 | |
---|
244 | // additional normalization??? |
---|
245 | answer_Rom_WB_mid /= 1.05 // "middle" of peaks |
---|
246 | |
---|
247 | SetDataFolder root: |
---|
248 | |
---|
249 | return 0 |
---|
250 | End |
---|
251 | |
---|
252 | // uses built-in Integrate1d() |
---|
253 | // |
---|
254 | Function V_DoWavelengthIntegral_interp(folderStr,funcStr,coefStr) |
---|
255 | String folderStr,funcStr,coefStr |
---|
256 | |
---|
257 | SetDataFolder $("root:"+folderStr) |
---|
258 | |
---|
259 | // gather the input waves |
---|
260 | WAVE qVals = $(folderStr+"_q") |
---|
261 | // WAVE cw = smear_coef_BroadPeak |
---|
262 | WAVE cw = $coefStr |
---|
263 | |
---|
264 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
265 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
266 | |
---|
267 | // make a wave for the answer |
---|
268 | Duplicate/O qvals answer_Rom_WB_interp |
---|
269 | |
---|
270 | // do the integration |
---|
271 | Variable loLim,upLim |
---|
272 | |
---|
273 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
274 | // using the empirical definition, "top" of the peaks |
---|
275 | // loLim = 3.37/5.3 |
---|
276 | // upLim = 8.25/5.3 |
---|
277 | |
---|
278 | // // using the "middle" |
---|
279 | // loLim = 3.37/5.3 |
---|
280 | // upLim = 8.37/5.3 |
---|
281 | // |
---|
282 | // // using the interpolated distribution (must change the function call) |
---|
283 | lolim = 3/5.3 |
---|
284 | uplim = 9/5.3 |
---|
285 | |
---|
286 | // using the "triangular" distribution (must change the function call) |
---|
287 | // loLim = 4/5.3 |
---|
288 | // upLim = 8/5.3 |
---|
289 | |
---|
290 | answer_Rom_WB_interp = V_Integrate_BuiltIn_interp(cw,loLim,upLim,qVals) |
---|
291 | |
---|
292 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
293 | // and is needed to normalize the integral? verify this on paper. |
---|
294 | answer_Rom_WB_interp *= 5.3 |
---|
295 | |
---|
296 | // normalize the integral |
---|
297 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
298 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
299 | answer_Rom_WB_interp /= 20051 // interpolated distribution |
---|
300 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
301 | |
---|
302 | // additional normalization??? |
---|
303 | answer_Rom_WB_interp /= 1.05 // "middle" of peaks |
---|
304 | |
---|
305 | SetDataFolder root: |
---|
306 | |
---|
307 | return 0 |
---|
308 | End |
---|
309 | |
---|
310 | // uses built-in Integrate1d() |
---|
311 | // |
---|
312 | Function V_DoWavelengthIntegral_triang(folderStr,funcStr,coefStr) |
---|
313 | String folderStr,funcStr,coefStr |
---|
314 | |
---|
315 | SetDataFolder $("root:"+folderStr) |
---|
316 | |
---|
317 | // gather the input waves |
---|
318 | WAVE qVals = $(folderStr+"_q") |
---|
319 | // WAVE cw = smear_coef_BroadPeak |
---|
320 | WAVE cw = $coefStr |
---|
321 | |
---|
322 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
323 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
324 | |
---|
325 | // make a wave for the answer |
---|
326 | Duplicate/O qvals answer_Rom_WB_triang |
---|
327 | |
---|
328 | // do the integration |
---|
329 | Variable loLim,upLim |
---|
330 | |
---|
331 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
332 | // using the empirical definition, "top" of the peaks |
---|
333 | // loLim = 3.37/5.3 |
---|
334 | // upLim = 8.25/5.3 |
---|
335 | |
---|
336 | // // using the "middle" |
---|
337 | // loLim = 3.37/5.3 |
---|
338 | // upLim = 8.37/5.3 |
---|
339 | // |
---|
340 | // // using the interpolated distribution (must change the function call) |
---|
341 | // lolim = 3/5.3 |
---|
342 | // uplim = 9/5.3 |
---|
343 | |
---|
344 | // using the "triangular" distribution (must change the function call) |
---|
345 | loLim = 4/5.3 |
---|
346 | upLim = 8/5.3 |
---|
347 | |
---|
348 | answer_Rom_WB_triang = V_Integrate_BuiltIn_triangle(cw,loLim,upLim,qVals) |
---|
349 | |
---|
350 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
351 | // and is needed to normalize the integral? verify this on paper. |
---|
352 | answer_Rom_WB_triang *= 5.3 |
---|
353 | |
---|
354 | // normalize the integral |
---|
355 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
356 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
357 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
358 | answer_Rom_WB_triang /= 1 // triangular distribution (it's already normalized) |
---|
359 | |
---|
360 | // additional normalization??? |
---|
361 | answer_Rom_WB_triang /= 1.1 // |
---|
362 | |
---|
363 | SetDataFolder root: |
---|
364 | |
---|
365 | return 0 |
---|
366 | End |
---|
367 | |
---|
368 | |
---|
369 | // |
---|
370 | // not used anymore - the built-in works fine, but this |
---|
371 | // may be of use if I convert all of these to fitting functions. |
---|
372 | // |
---|
373 | Function V_TestWavelengthIntegral(folderStr) |
---|
374 | String folderStr |
---|
375 | |
---|
376 | SetDataFolder $("root:"+folderStr) |
---|
377 | |
---|
378 | |
---|
379 | // gather the input waves |
---|
380 | WAVE qVals = $(folderStr+"_q") |
---|
381 | // WAVE cw = smear_coef_sf |
---|
382 | // WAVE cw = smear_coef_pgs |
---|
383 | WAVE cw = smear_coef_BroadPeak |
---|
384 | |
---|
385 | // make a wave for the answer |
---|
386 | // Duplicate/O qvals answer, answer_builtIn |
---|
387 | Duplicate/O qvals answer_Quad |
---|
388 | |
---|
389 | // do the integration |
---|
390 | // Function IntegrateFn_N(fcn,loLim,upLim,w,x,nord) |
---|
391 | |
---|
392 | Variable loLim,upLim,nord |
---|
393 | |
---|
394 | nord = 76 // 20 quadrature points not enough for white beam (especially AgBeh test) |
---|
395 | |
---|
396 | loLim = 4/5.3 |
---|
397 | upLim = 8/5.3 |
---|
398 | |
---|
399 | // 2018: |
---|
400 | // my quadrature and the built-in function are equivalent. Romberg may be useful in some cases |
---|
401 | // especially for multiple integrals. then number of points and timing can be optimized. But either |
---|
402 | // method can be used. |
---|
403 | answer_Quad = IntegrateFn_N(V_WB_testKernel,loLim,upLim,cw,qVals,nord) |
---|
404 | |
---|
405 | |
---|
406 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
407 | // and is needed to normalize the integral? verify this on paper. |
---|
408 | answer_Quad *= 5.3 |
---|
409 | // answer_builtIn *= 5.3 |
---|
410 | |
---|
411 | SetDataFolder root: |
---|
412 | |
---|
413 | return 0 |
---|
414 | End |
---|
415 | |
---|
416 | |
---|
417 | |
---|
418 | Function V_WB_testKernel(cw,x,dum) |
---|
419 | Wave cw |
---|
420 | Variable x // the q-value for the calculation |
---|
421 | Variable dum // the dummy integration variable |
---|
422 | |
---|
423 | Variable val |
---|
424 | SVAR funcStr = root:gFunctionString |
---|
425 | FUNCREF SANSModel_proto func = $funcStr |
---|
426 | |
---|
427 | // val = (1-dum*5.3/8)*BroadPeakX(cw,x/dum) |
---|
428 | val = (1-dum*5.3/8)*func(cw,x/dum) |
---|
429 | |
---|
430 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,x/dum) |
---|
431 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,x/dum) |
---|
432 | |
---|
433 | return (val) |
---|
434 | End |
---|
435 | |
---|
436 | Proc WBDistr() |
---|
437 | |
---|
438 | make/O/D distr |
---|
439 | SetScale/I x 0.755,1.509,"", distr |
---|
440 | distr = (1-x*5.3/8) |
---|
441 | display distr |
---|
442 | |
---|
443 | end |
---|
444 | |
---|
445 | // the trick here is that declaring the last qVal wave as a variable |
---|
446 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
447 | Function V_Integrate_BuiltIn_top(cw,loLim,upLim,qVal) |
---|
448 | Wave cw |
---|
449 | Variable loLim,upLim |
---|
450 | Variable qVal |
---|
451 | |
---|
452 | Variable/G root:qq = qval |
---|
453 | Variable ans |
---|
454 | |
---|
455 | // ans = Integrate1D(V_intgrnd_top,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
456 | ans = Integrate1D(V_intgrnd_top,lolim,uplim,1,0,cw) // Romberg integration |
---|
457 | |
---|
458 | return ans |
---|
459 | end |
---|
460 | |
---|
461 | // the trick here is that declaring the last qVal wave as a variable |
---|
462 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
463 | Function V_Integrate_BuiltIn_mid(cw,loLim,upLim,qVal) |
---|
464 | Wave cw |
---|
465 | Variable loLim,upLim |
---|
466 | Variable qVal |
---|
467 | |
---|
468 | Variable/G root:qq = qval |
---|
469 | Variable ans |
---|
470 | |
---|
471 | // ans = Integrate1D(V_intgrnd_mid,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
472 | ans = Integrate1D(V_intgrnd_mid,lolim,uplim,1,0,cw) // Romberg integration |
---|
473 | |
---|
474 | return ans |
---|
475 | end |
---|
476 | |
---|
477 | // the trick here is that declaring the last qVal wave as a variable |
---|
478 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
479 | Function V_Integrate_BuiltIn_triangle(cw,loLim,upLim,qVal) |
---|
480 | Wave cw |
---|
481 | Variable loLim,upLim |
---|
482 | Variable qVal |
---|
483 | |
---|
484 | Variable/G root:qq = qval |
---|
485 | Variable ans |
---|
486 | |
---|
487 | // ans = Integrate1D(V_intgrnd_triangle,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
488 | ans = Integrate1D(V_intgrnd_triangle,lolim,uplim,1,0,cw) // Romberg integration |
---|
489 | |
---|
490 | return ans |
---|
491 | end |
---|
492 | |
---|
493 | // the trick here is that declaring the last qVal wave as a variable |
---|
494 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
495 | Function V_Integrate_BuiltIn_interp(cw,loLim,upLim,qVal) |
---|
496 | Wave cw |
---|
497 | Variable loLim,upLim |
---|
498 | Variable qVal |
---|
499 | |
---|
500 | Variable/G root:qq = qval |
---|
501 | Variable ans |
---|
502 | |
---|
503 | // ans = Integrate1D(V_intgrnd_interp,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
504 | ans = Integrate1D(V_intgrnd_interp,lolim,uplim,1,0,cw) // Romberg integration |
---|
505 | |
---|
506 | return ans |
---|
507 | end |
---|
508 | |
---|
509 | // |
---|
510 | // See V_DummyFunctions.ipf for the full list |
---|
511 | // |
---|
512 | //Function BroadPeakX_(cw,x) |
---|
513 | // Wave cw |
---|
514 | // Variable x |
---|
515 | // |
---|
516 | // return(BroadPeakX(cw,x)) |
---|
517 | //end |
---|
518 | |
---|
519 | Function V_intgrnd_top(cw,dum) |
---|
520 | Wave cw |
---|
521 | Variable dum // the dummy of the integration |
---|
522 | |
---|
523 | Variable val |
---|
524 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
525 | SVAR funcStr = root:gFunctionString |
---|
526 | FUNCREF SANSModel_proto func = $funcStr |
---|
527 | |
---|
528 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
529 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
530 | |
---|
531 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
532 | val = V_WhiteBeamDist_top(dum*5.3)*func(cw,qq/dum) |
---|
533 | |
---|
534 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
535 | |
---|
536 | return (val) |
---|
537 | End |
---|
538 | |
---|
539 | Function V_intgrnd_mid(cw,dum) |
---|
540 | Wave cw |
---|
541 | Variable dum // the dummy of the integration |
---|
542 | |
---|
543 | Variable val |
---|
544 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
545 | SVAR funcStr = root:gFunctionString |
---|
546 | FUNCREF SANSModel_proto func = $funcStr |
---|
547 | |
---|
548 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
549 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
550 | |
---|
551 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
552 | val = V_WhiteBeamDist_mid(dum*5.3)*func(cw,qq/dum) |
---|
553 | |
---|
554 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
555 | |
---|
556 | return (val) |
---|
557 | End |
---|
558 | |
---|
559 | Function V_intgrnd_triangle(cw,dum) |
---|
560 | Wave cw |
---|
561 | Variable dum // the dummy of the integration |
---|
562 | |
---|
563 | Variable val |
---|
564 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
565 | SVAR funcStr = root:gFunctionString |
---|
566 | FUNCREF SANSModel_proto func = $funcStr |
---|
567 | |
---|
568 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
569 | val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
570 | |
---|
571 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
572 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,qq/dum) |
---|
573 | |
---|
574 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
575 | |
---|
576 | return (val) |
---|
577 | End |
---|
578 | |
---|
579 | Function V_intgrnd_interp(cw,dum) |
---|
580 | Wave cw |
---|
581 | Variable dum // the dummy of the integration |
---|
582 | |
---|
583 | Variable val |
---|
584 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
585 | SVAR funcStr = root:gFunctionString |
---|
586 | FUNCREF SANSModel_proto func = $funcStr |
---|
587 | |
---|
588 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
589 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
590 | |
---|
591 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
592 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,qq/dum) |
---|
593 | |
---|
594 | val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
595 | |
---|
596 | return (val) |
---|
597 | End |
---|
598 | |
---|
599 | |
---|
600 | //////////////////////////// |
---|
601 | |
---|
602 | // need a function to return the model function name |
---|
603 | // given the coefficient wave |
---|
604 | // |
---|
605 | // want the function NameX for use in the integration, not the AAO function |
---|
606 | // |
---|
607 | |
---|
608 | // from the name of the coefficient wave, get the function name |
---|
609 | // be sure that there is no "Smeared" at the beginning of the name |
---|
610 | // tag X to the end of the name string |
---|
611 | // |
---|
612 | // then the funcString must be passed in as a global to the built-in integration function. |
---|
613 | // |
---|
614 | Function/S V_getXFuncStrFromCoef(cw) |
---|
615 | Wave cw |
---|
616 | |
---|
617 | String cwStr = NameOfWave(cw) |
---|
618 | String outStr = "",extStr="" |
---|
619 | |
---|
620 | // String convStr = ReplaceString("_",cwStr,".") // change the _ to . |
---|
621 | // extStr = ParseFilePath(4, convStr, ":", 0, 0) // extracts the last .nnn, without the . |
---|
622 | |
---|
623 | // go through the list of coefKWStr pairs |
---|
624 | // look for the cwStr |
---|
625 | // take up to the = (that is the funcStr) |
---|
626 | // remove "Smeared" if needed |
---|
627 | SVAR coefList=root:Packages:NIST:coefKWStr |
---|
628 | |
---|
629 | Variable ii,num |
---|
630 | String item |
---|
631 | |
---|
632 | num=ItemsInList(coefList,";") |
---|
633 | ii=0 |
---|
634 | do |
---|
635 | item = StringFromList(ii, coefList, ";") |
---|
636 | |
---|
637 | if(strsearch(item,cwStr,0) != -1) //match |
---|
638 | item = ReplaceString("=",item,".") //replace the = with . |
---|
639 | outStr = ParseFilePath(3, item, ":", 0, 0) // extract file name without extension |
---|
640 | outStr = ReplaceString("Smeared",outStr,"") // replace "Smeared" with null, if it's there |
---|
641 | ii = num + 1 |
---|
642 | endif |
---|
643 | |
---|
644 | ii+=1 |
---|
645 | while(ii<num) |
---|
646 | |
---|
647 | return(outStr+"X") |
---|
648 | end |
---|
649 | |
---|
650 | ////////////////////////////////////////// |
---|
651 | // generates dummy functions of the form: |
---|
652 | // |
---|
653 | //Function BroadPeakX_(cw,x) |
---|
654 | // Wave cw |
---|
655 | // Variable x |
---|
656 | // return(BroadPeakX(cw,x)) |
---|
657 | //End |
---|
658 | // |
---|
659 | // so that I can use the FUNCREF |
---|
660 | // which fails for some reason when I just use the XOP name? |
---|
661 | // |
---|
662 | // |
---|
663 | // not everything ending in X is a model function - trimmed list is in V_DummyFunctions.ipf |
---|
664 | // |
---|
665 | Function V_generateDummyFuncs() |
---|
666 | |
---|
667 | String list = FunctionList("*X",";","KIND:4") |
---|
668 | Variable ii,num |
---|
669 | String item,str |
---|
670 | |
---|
671 | num=ItemsInList(list,";") |
---|
672 | |
---|
673 | NewNotebook/N=Notebook1/F=0 |
---|
674 | |
---|
675 | |
---|
676 | for(ii=0;ii<num;ii+=1) |
---|
677 | item = StringFromList(ii,list,";") |
---|
678 | str = "\r" |
---|
679 | str = "Function "+item+"_(cw,x)\r" |
---|
680 | str += "\tWave cw\r" |
---|
681 | str += "\tVariable x\r" |
---|
682 | str += "\treturn("+item+"(cw,x))\r" |
---|
683 | str += "End\r\r" |
---|
684 | |
---|
685 | //print str |
---|
686 | |
---|
687 | Notebook $"", text=str |
---|
688 | |
---|
689 | endfor |
---|
690 | return(0) |
---|
691 | |
---|
692 | End |
---|