1 | #pragma TextEncoding = "MacRoman" |
---|
2 | #pragma rtGlobals=3 // Use modern global access method and strict wave access. |
---|
3 | |
---|
4 | // |
---|
5 | // |
---|
6 | // testing routines to compare various integration methods and approximations |
---|
7 | // for calculating the resolution smearing from the white beam wavelength distribution |
---|
8 | // |
---|
9 | // |
---|
10 | // |
---|
11 | // IntegrateFn_N is something that I wrote (in GaussUtils) for quadrature with any number of |
---|
12 | // points (user-selected) |
---|
13 | // |
---|
14 | // 2018: |
---|
15 | // my quadrature and the built-in function are equivalent. Romberg may be useful in some cases |
---|
16 | // especially for multiple integrals. then number of points and timing can be optimized. But either |
---|
17 | // method can be used. |
---|
18 | // |
---|
19 | // answer = IntegrateFn_N(V_WB_testKernel,loLim,upLim,cw,qVals,nord) |
---|
20 | // answer_Rom_WB = Integrate_BuiltIn(cw,loLim,upLim,qVals) |
---|
21 | |
---|
22 | // using a matrix multiplication for this calculation of the white beam wavelength smearing is NOT |
---|
23 | // recommended -- the calculation is not nearly accurate enough. |
---|
24 | // |
---|
25 | // |
---|
26 | // Using my built-in quadrature routines (see V_TestWavelengthIntegral) may be of use when |
---|
27 | // writing fitting functions for all of these cases. The built-in Integrate may be limited |
---|
28 | // |
---|
29 | // TODO -- beware what might happen to the calculations since there is a single global string |
---|
30 | // containing the function name. |
---|
31 | // |
---|
32 | // TODO: |
---|
33 | // -- a significant problem with using the coef waves that are used in the wrapper are that |
---|
34 | // they are set up with a dependency, so doing the WB calculation also does the "regular" |
---|
35 | // smeared calculation, doubling the time required... |
---|
36 | |
---|
37 | |
---|
38 | // |
---|
39 | // needs V_DummyFunctions for the FUNCREF to work - since it fails if I simply call the XOP |
---|
40 | // |
---|
41 | // |
---|
42 | // SANSModel_proto(w,x) is in GaussUtils_v40.ipf |
---|
43 | // |
---|
44 | // FUNCREF SANSModel_proto fcn |
---|
45 | // |
---|
46 | |
---|
47 | |
---|
48 | |
---|
49 | // call the calculation |
---|
50 | // see DoTheFitButton in Wrapper_v40.ipf |
---|
51 | // |
---|
52 | // |
---|
53 | Macro V_Calc_WB_Smearing_top() |
---|
54 | |
---|
55 | String folderStr,funcStr,coefStr |
---|
56 | |
---|
57 | ControlInfo/W=WrapperPanel popup_0 |
---|
58 | folderStr=S_Value |
---|
59 | |
---|
60 | ControlInfo/W=WrapperPanel popup_1 |
---|
61 | funcStr=S_Value |
---|
62 | |
---|
63 | ControlInfo/W=WrapperPanel popup_2 |
---|
64 | coefStr=S_Value |
---|
65 | |
---|
66 | V_DoWavelengthIntegral_top(folderStr,funcStr,coefStr) |
---|
67 | |
---|
68 | SetDataFolder root: |
---|
69 | End |
---|
70 | |
---|
71 | |
---|
72 | Macro V_Calc_WB_Smearing_mid() |
---|
73 | |
---|
74 | String folderStr,funcStr,coefStr |
---|
75 | |
---|
76 | ControlInfo/W=WrapperPanel popup_0 |
---|
77 | folderStr=S_Value |
---|
78 | |
---|
79 | ControlInfo/W=WrapperPanel popup_1 |
---|
80 | funcStr=S_Value |
---|
81 | |
---|
82 | ControlInfo/W=WrapperPanel popup_2 |
---|
83 | coefStr=S_Value |
---|
84 | |
---|
85 | V_DoWavelengthIntegral_mid(folderStr,funcStr,coefStr) |
---|
86 | |
---|
87 | SetDataFolder root: |
---|
88 | End |
---|
89 | |
---|
90 | Macro V_Calc_WB_Smearing_interp() |
---|
91 | |
---|
92 | String folderStr,funcStr,coefStr |
---|
93 | |
---|
94 | ControlInfo/W=WrapperPanel popup_0 |
---|
95 | folderStr=S_Value |
---|
96 | |
---|
97 | ControlInfo/W=WrapperPanel popup_1 |
---|
98 | funcStr=S_Value |
---|
99 | |
---|
100 | ControlInfo/W=WrapperPanel popup_2 |
---|
101 | coefStr=S_Value |
---|
102 | |
---|
103 | V_DoWavelengthIntegral_interp(folderStr,funcStr,coefStr) |
---|
104 | |
---|
105 | SetDataFolder root: |
---|
106 | End |
---|
107 | |
---|
108 | Macro V_Calc_WB_Smearing_triang() |
---|
109 | |
---|
110 | String folderStr,funcStr,coefStr |
---|
111 | |
---|
112 | ControlInfo/W=WrapperPanel popup_0 |
---|
113 | folderStr=S_Value |
---|
114 | |
---|
115 | ControlInfo/W=WrapperPanel popup_1 |
---|
116 | funcStr=S_Value |
---|
117 | |
---|
118 | ControlInfo/W=WrapperPanel popup_2 |
---|
119 | coefStr=S_Value |
---|
120 | |
---|
121 | V_DoWavelengthIntegral_triang(folderStr,funcStr,coefStr) |
---|
122 | |
---|
123 | SetDataFolder root: |
---|
124 | End |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | // uses built-in Integrate1d() |
---|
129 | // |
---|
130 | Function V_DoWavelengthIntegral_top(folderStr,funcStr,coefStr) |
---|
131 | String folderStr,funcStr,coefStr |
---|
132 | |
---|
133 | SetDataFolder $("root:"+folderStr) |
---|
134 | |
---|
135 | // gather the input waves |
---|
136 | WAVE qVals = $(folderStr+"_q") |
---|
137 | // WAVE cw = smear_coef_BroadPeak |
---|
138 | WAVE cw = $coefStr |
---|
139 | |
---|
140 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
141 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
142 | |
---|
143 | // make a wave for the answer |
---|
144 | Duplicate/O qvals answer_Rom_WB_top |
---|
145 | |
---|
146 | // do the integration |
---|
147 | Variable loLim,upLim |
---|
148 | |
---|
149 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
150 | // using the empirical definition, "top" of the peaks |
---|
151 | loLim = 3.37/5.3 |
---|
152 | upLim = 8.25/5.3 |
---|
153 | |
---|
154 | // // using the "middle" |
---|
155 | // loLim = 3.37/5.3 |
---|
156 | // upLim = 8.37/5.3 |
---|
157 | // |
---|
158 | // // using the interpolated distribution (must change the function call) |
---|
159 | // lolim = 3/5.3 |
---|
160 | // uplim = 9/5.3 |
---|
161 | |
---|
162 | // using the "triangular" distribution (must change the function call) |
---|
163 | // loLim = 4/5.3 |
---|
164 | // upLim = 8/5.3 |
---|
165 | |
---|
166 | answer_Rom_WB_top = V_Integrate_BuiltIn_top(cw,loLim,upLim,qVals) |
---|
167 | |
---|
168 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
169 | // and is needed to normalize the integral? verify this on paper. |
---|
170 | answer_Rom_WB_top *= 5.3 |
---|
171 | |
---|
172 | // normalize the integral |
---|
173 | answer_Rom_WB_top /= 20926 // "top" of peaks |
---|
174 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
175 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
176 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
177 | |
---|
178 | // additional normalization??? |
---|
179 | answer_Rom_WB_top /= 1.05 // |
---|
180 | |
---|
181 | SetDataFolder root: |
---|
182 | |
---|
183 | return 0 |
---|
184 | End |
---|
185 | |
---|
186 | |
---|
187 | // uses built-in Integrate1d() |
---|
188 | // |
---|
189 | Function V_DoWavelengthIntegral_mid(folderStr,funcStr,coefStr) |
---|
190 | String folderStr,funcStr,coefStr |
---|
191 | |
---|
192 | SetDataFolder $("root:"+folderStr) |
---|
193 | |
---|
194 | // gather the input waves |
---|
195 | WAVE qVals = $(folderStr+"_q") |
---|
196 | // WAVE cw = smear_coef_BroadPeak |
---|
197 | WAVE cw = $coefStr |
---|
198 | |
---|
199 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
200 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
201 | |
---|
202 | // make a wave for the answer |
---|
203 | Duplicate/O qvals answer_Rom_WB_mid |
---|
204 | |
---|
205 | // do the integration |
---|
206 | Variable loLim,upLim |
---|
207 | |
---|
208 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
209 | // using the empirical definition, "top" of the peaks |
---|
210 | // loLim = 3.37/5.3 |
---|
211 | // upLim = 8.25/5.3 |
---|
212 | |
---|
213 | // // using the "middle" |
---|
214 | loLim = 3.37/5.3 |
---|
215 | upLim = 8.37/5.3 |
---|
216 | // |
---|
217 | // // using the interpolated distribution (must change the function call) |
---|
218 | // lolim = 3/5.3 |
---|
219 | // uplim = 9/5.3 |
---|
220 | |
---|
221 | // using the "triangular" distribution (must change the function call) |
---|
222 | // loLim = 4/5.3 |
---|
223 | // upLim = 8/5.3 |
---|
224 | |
---|
225 | answer_Rom_WB_mid = V_Integrate_BuiltIn_mid(cw,loLim,upLim,qVals) |
---|
226 | |
---|
227 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
228 | // and is needed to normalize the integral? verify this on paper. |
---|
229 | answer_Rom_WB_mid *= 5.3 |
---|
230 | |
---|
231 | // normalize the integral |
---|
232 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
233 | answer_Rom_WB_mid /= 19933 // "middle" of peaks |
---|
234 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
235 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
236 | |
---|
237 | // additional normalization??? |
---|
238 | answer_Rom_WB_mid /= 1.05 // "middle" of peaks |
---|
239 | |
---|
240 | SetDataFolder root: |
---|
241 | |
---|
242 | return 0 |
---|
243 | End |
---|
244 | |
---|
245 | // uses built-in Integrate1d() |
---|
246 | // |
---|
247 | Function V_DoWavelengthIntegral_interp(folderStr,funcStr,coefStr) |
---|
248 | String folderStr,funcStr,coefStr |
---|
249 | |
---|
250 | SetDataFolder $("root:"+folderStr) |
---|
251 | |
---|
252 | // gather the input waves |
---|
253 | WAVE qVals = $(folderStr+"_q") |
---|
254 | // WAVE cw = smear_coef_BroadPeak |
---|
255 | WAVE cw = $coefStr |
---|
256 | |
---|
257 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
258 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
259 | |
---|
260 | // make a wave for the answer |
---|
261 | Duplicate/O qvals answer_Rom_WB_interp |
---|
262 | |
---|
263 | // do the integration |
---|
264 | Variable loLim,upLim |
---|
265 | |
---|
266 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
267 | // using the empirical definition, "top" of the peaks |
---|
268 | // loLim = 3.37/5.3 |
---|
269 | // upLim = 8.25/5.3 |
---|
270 | |
---|
271 | // // using the "middle" |
---|
272 | // loLim = 3.37/5.3 |
---|
273 | // upLim = 8.37/5.3 |
---|
274 | // |
---|
275 | // // using the interpolated distribution (must change the function call) |
---|
276 | lolim = 3/5.3 |
---|
277 | uplim = 9/5.3 |
---|
278 | |
---|
279 | // using the "triangular" distribution (must change the function call) |
---|
280 | // loLim = 4/5.3 |
---|
281 | // upLim = 8/5.3 |
---|
282 | |
---|
283 | answer_Rom_WB_interp = V_Integrate_BuiltIn_interp(cw,loLim,upLim,qVals) |
---|
284 | |
---|
285 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
286 | // and is needed to normalize the integral? verify this on paper. |
---|
287 | answer_Rom_WB_interp *= 5.3 |
---|
288 | |
---|
289 | // normalize the integral |
---|
290 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
291 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
292 | answer_Rom_WB_interp /= 20051 // interpolated distribution |
---|
293 | // answer_Rom_WB /= 1 // triangular distribution (it's already normalized) |
---|
294 | |
---|
295 | // additional normalization??? |
---|
296 | answer_Rom_WB_interp /= 1.05 // "middle" of peaks |
---|
297 | |
---|
298 | SetDataFolder root: |
---|
299 | |
---|
300 | return 0 |
---|
301 | End |
---|
302 | |
---|
303 | // uses built-in Integrate1d() |
---|
304 | // |
---|
305 | Function V_DoWavelengthIntegral_triang(folderStr,funcStr,coefStr) |
---|
306 | String folderStr,funcStr,coefStr |
---|
307 | |
---|
308 | SetDataFolder $("root:"+folderStr) |
---|
309 | |
---|
310 | // gather the input waves |
---|
311 | WAVE qVals = $(folderStr+"_q") |
---|
312 | // WAVE cw = smear_coef_BroadPeak |
---|
313 | WAVE cw = $coefStr |
---|
314 | |
---|
315 | funcStr = V_getXFuncStrFromCoef(cw)+"_" //get the modelX name, tag on "_" |
---|
316 | String/G root:gFunctionString = funcStr // need a global reference to pass to Integrate1D |
---|
317 | |
---|
318 | // make a wave for the answer |
---|
319 | Duplicate/O qvals answer_Rom_WB_triang |
---|
320 | |
---|
321 | // do the integration |
---|
322 | Variable loLim,upLim |
---|
323 | |
---|
324 | // define limits based on lo/mean, hi/mean of the wavelength distribution |
---|
325 | // using the empirical definition, "top" of the peaks |
---|
326 | // loLim = 3.37/5.3 |
---|
327 | // upLim = 8.25/5.3 |
---|
328 | |
---|
329 | // // using the "middle" |
---|
330 | // loLim = 3.37/5.3 |
---|
331 | // upLim = 8.37/5.3 |
---|
332 | // |
---|
333 | // // using the interpolated distribution (must change the function call) |
---|
334 | // lolim = 3/5.3 |
---|
335 | // uplim = 9/5.3 |
---|
336 | |
---|
337 | // using the "triangular" distribution (must change the function call) |
---|
338 | loLim = 4/5.3 |
---|
339 | upLim = 8/5.3 |
---|
340 | |
---|
341 | answer_Rom_WB_triang = V_Integrate_BuiltIn_triangle(cw,loLim,upLim,qVals) |
---|
342 | |
---|
343 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
344 | // and is needed to normalize the integral? verify this on paper. |
---|
345 | answer_Rom_WB_triang *= 5.3 |
---|
346 | |
---|
347 | // normalize the integral |
---|
348 | // answer_Rom_WB /= 20926 // "top" of peaks |
---|
349 | // answer_Rom_WB /= 19933 // "middle" of peaks |
---|
350 | // answer_Rom_WB /= 20051 // interpolated distribution |
---|
351 | answer_Rom_WB_triang /= 1 // triangular distribution (it's already normalized) |
---|
352 | |
---|
353 | // additional normalization??? |
---|
354 | answer_Rom_WB_triang /= 1.1 // |
---|
355 | |
---|
356 | SetDataFolder root: |
---|
357 | |
---|
358 | return 0 |
---|
359 | End |
---|
360 | |
---|
361 | |
---|
362 | // |
---|
363 | // not used anymore - the built-in works fine, but this |
---|
364 | // may be of use if I convert all of these to fitting functions. |
---|
365 | // |
---|
366 | Function V_TestWavelengthIntegral(folderStr) |
---|
367 | String folderStr |
---|
368 | |
---|
369 | SetDataFolder $("root:"+folderStr) |
---|
370 | |
---|
371 | |
---|
372 | // gather the input waves |
---|
373 | WAVE qVals = $(folderStr+"_q") |
---|
374 | // WAVE cw = smear_coef_sf |
---|
375 | // WAVE cw = smear_coef_pgs |
---|
376 | WAVE cw = smear_coef_BroadPeak |
---|
377 | |
---|
378 | // make a wave for the answer |
---|
379 | // Duplicate/O qvals answer, answer_builtIn |
---|
380 | Duplicate/O qvals answer_Quad |
---|
381 | |
---|
382 | // do the integration |
---|
383 | // Function IntegrateFn_N(fcn,loLim,upLim,w,x,nord) |
---|
384 | |
---|
385 | Variable loLim,upLim,nord |
---|
386 | |
---|
387 | nord = 76 // 20 quadrature points not enough for white beam (especially AgBeh test) |
---|
388 | |
---|
389 | loLim = 4/5.3 |
---|
390 | upLim = 8/5.3 |
---|
391 | |
---|
392 | // 2018: |
---|
393 | // my quadrature and the built-in function are equivalent. Romberg may be useful in some cases |
---|
394 | // especially for multiple integrals. then number of points and timing can be optimized. But either |
---|
395 | // method can be used. |
---|
396 | answer_Quad = IntegrateFn_N(V_WB_testKernel,loLim,upLim,cw,qVals,nord) |
---|
397 | |
---|
398 | |
---|
399 | // why do I need this? Is this because this is defined as the mean of the distribution |
---|
400 | // and is needed to normalize the integral? verify this on paper. |
---|
401 | answer_Quad *= 5.3 |
---|
402 | // answer_builtIn *= 5.3 |
---|
403 | |
---|
404 | SetDataFolder root: |
---|
405 | |
---|
406 | return 0 |
---|
407 | End |
---|
408 | |
---|
409 | |
---|
410 | |
---|
411 | Function V_WB_testKernel(cw,x,dum) |
---|
412 | Wave cw |
---|
413 | Variable x // the q-value for the calculation |
---|
414 | Variable dum // the dummy integration variable |
---|
415 | |
---|
416 | Variable val |
---|
417 | SVAR funcStr = root:gFunctionString |
---|
418 | FUNCREF SANSModel_proto func = $funcStr |
---|
419 | |
---|
420 | // val = (1-dum*5.3/8)*BroadPeakX(cw,x/dum) |
---|
421 | val = (1-dum*5.3/8)*func(cw,x/dum) |
---|
422 | |
---|
423 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,x/dum) |
---|
424 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,x/dum) |
---|
425 | |
---|
426 | return (val) |
---|
427 | End |
---|
428 | |
---|
429 | Proc WBDistr() |
---|
430 | |
---|
431 | make/O/D distr |
---|
432 | SetScale/I x 0.755,1.509,"", distr |
---|
433 | distr = (1-x*5.3/8) |
---|
434 | display distr |
---|
435 | |
---|
436 | end |
---|
437 | |
---|
438 | // the trick here is that declaring the last qVal wave as a variable |
---|
439 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
440 | Function V_Integrate_BuiltIn_top(cw,loLim,upLim,qVal) |
---|
441 | Wave cw |
---|
442 | Variable loLim,upLim |
---|
443 | Variable qVal |
---|
444 | |
---|
445 | Variable/G root:qq = qval |
---|
446 | Variable ans |
---|
447 | |
---|
448 | // ans = Integrate1D(V_intgrnd_top,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
449 | ans = Integrate1D(V_intgrnd_top,lolim,uplim,1,0,cw) // Romberg integration |
---|
450 | |
---|
451 | return ans |
---|
452 | end |
---|
453 | |
---|
454 | // the trick here is that declaring the last qVal wave as a variable |
---|
455 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
456 | Function V_Integrate_BuiltIn_mid(cw,loLim,upLim,qVal) |
---|
457 | Wave cw |
---|
458 | Variable loLim,upLim |
---|
459 | Variable qVal |
---|
460 | |
---|
461 | Variable/G root:qq = qval |
---|
462 | Variable ans |
---|
463 | |
---|
464 | // ans = Integrate1D(V_intgrnd_mid,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
465 | ans = Integrate1D(V_intgrnd_mid,lolim,uplim,1,0,cw) // Romberg integration |
---|
466 | |
---|
467 | return ans |
---|
468 | end |
---|
469 | |
---|
470 | // the trick here is that declaring the last qVal wave as a variable |
---|
471 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
472 | Function V_Integrate_BuiltIn_triangle(cw,loLim,upLim,qVal) |
---|
473 | Wave cw |
---|
474 | Variable loLim,upLim |
---|
475 | Variable qVal |
---|
476 | |
---|
477 | Variable/G root:qq = qval |
---|
478 | Variable ans |
---|
479 | |
---|
480 | // ans = Integrate1D(V_intgrnd_triangle,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
481 | ans = Integrate1D(V_intgrnd_triangle,lolim,uplim,1,0,cw) // Romberg integration |
---|
482 | |
---|
483 | return ans |
---|
484 | end |
---|
485 | |
---|
486 | // the trick here is that declaring the last qVal wave as a variable |
---|
487 | // since this is implicitly called N times in the wave assignment of the answer wave |
---|
488 | Function V_Integrate_BuiltIn_interp(cw,loLim,upLim,qVal) |
---|
489 | Wave cw |
---|
490 | Variable loLim,upLim |
---|
491 | Variable qVal |
---|
492 | |
---|
493 | Variable/G root:qq = qval |
---|
494 | Variable ans |
---|
495 | |
---|
496 | // ans = Integrate1D(V_intgrnd_interp,lolim,uplim,2,0,cw) //adaptive quadrature |
---|
497 | ans = Integrate1D(V_intgrnd_interp,lolim,uplim,1,0,cw) // Romberg integration |
---|
498 | |
---|
499 | return ans |
---|
500 | end |
---|
501 | |
---|
502 | // |
---|
503 | // See V_DummyFunctions.ipf for the full list |
---|
504 | // |
---|
505 | //Function BroadPeakX_(cw,x) |
---|
506 | // Wave cw |
---|
507 | // Variable x |
---|
508 | // |
---|
509 | // return(BroadPeakX(cw,x)) |
---|
510 | //end |
---|
511 | |
---|
512 | Function V_intgrnd_top(cw,dum) |
---|
513 | Wave cw |
---|
514 | Variable dum // the dummy of the integration |
---|
515 | |
---|
516 | Variable val |
---|
517 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
518 | SVAR funcStr = root:gFunctionString |
---|
519 | FUNCREF SANSModel_proto func = $funcStr |
---|
520 | |
---|
521 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
522 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
523 | |
---|
524 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
525 | val = V_WhiteBeamDist_top(dum*5.3)*func(cw,qq/dum) |
---|
526 | |
---|
527 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
528 | |
---|
529 | return (val) |
---|
530 | End |
---|
531 | |
---|
532 | Function V_intgrnd_mid(cw,dum) |
---|
533 | Wave cw |
---|
534 | Variable dum // the dummy of the integration |
---|
535 | |
---|
536 | Variable val |
---|
537 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
538 | SVAR funcStr = root:gFunctionString |
---|
539 | FUNCREF SANSModel_proto func = $funcStr |
---|
540 | |
---|
541 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
542 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
543 | |
---|
544 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
545 | val = V_WhiteBeamDist_mid(dum*5.3)*func(cw,qq/dum) |
---|
546 | |
---|
547 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
548 | |
---|
549 | return (val) |
---|
550 | End |
---|
551 | |
---|
552 | Function V_intgrnd_triangle(cw,dum) |
---|
553 | Wave cw |
---|
554 | Variable dum // the dummy of the integration |
---|
555 | |
---|
556 | Variable val |
---|
557 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
558 | SVAR funcStr = root:gFunctionString |
---|
559 | FUNCREF SANSModel_proto func = $funcStr |
---|
560 | |
---|
561 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
562 | val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
563 | |
---|
564 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
565 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,qq/dum) |
---|
566 | |
---|
567 | // val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
568 | |
---|
569 | return (val) |
---|
570 | End |
---|
571 | |
---|
572 | Function V_intgrnd_interp(cw,dum) |
---|
573 | Wave cw |
---|
574 | Variable dum // the dummy of the integration |
---|
575 | |
---|
576 | Variable val |
---|
577 | NVAR qq = root:qq //the q-value of the integration, not part of cw, so pass global |
---|
578 | SVAR funcStr = root:gFunctionString |
---|
579 | FUNCREF SANSModel_proto func = $funcStr |
---|
580 | |
---|
581 | // val = (1-dum*5.3/8)*BroadPeakX(cw,qq/dum) |
---|
582 | // val = (1-dum*5.3/8)*func(cw,qq/dum) |
---|
583 | |
---|
584 | // val = V_WhiteBeamDist(dum*5.3)*BroadPeakX(cw,qq/dum) |
---|
585 | // val = V_WhiteBeamDist(dum*5.3)*func(cw,qq/dum) |
---|
586 | |
---|
587 | val = V_WhiteBeamInterp(dum*5.3)*func(cw,qq/dum) |
---|
588 | |
---|
589 | return (val) |
---|
590 | End |
---|
591 | |
---|
592 | |
---|
593 | //////////////////////////// |
---|
594 | |
---|
595 | // need a function to return the model function name |
---|
596 | // given the coefficient wave |
---|
597 | // |
---|
598 | // want the function NameX for use in the integration, not the AAO function |
---|
599 | // |
---|
600 | |
---|
601 | // from the name of the coefficient wave, get the function name |
---|
602 | // be sure that there is no "Smeared" at the beginning of the name |
---|
603 | // tag X to the end of the name string |
---|
604 | // |
---|
605 | // then the funcString must be passed in as a global to the built-in integration function. |
---|
606 | // |
---|
607 | Function/S V_getXFuncStrFromCoef(cw) |
---|
608 | Wave cw |
---|
609 | |
---|
610 | String cwStr = NameOfWave(cw) |
---|
611 | String outStr = "",extStr="" |
---|
612 | |
---|
613 | // String convStr = ReplaceString("_",cwStr,".") // change the _ to . |
---|
614 | // extStr = ParseFilePath(4, convStr, ":", 0, 0) // extracts the last .nnn, without the . |
---|
615 | |
---|
616 | // go through the list of coefKWStr pairs |
---|
617 | // look for the cwStr |
---|
618 | // take up to the = (that is the funcStr) |
---|
619 | // remove "Smeared" if needed |
---|
620 | SVAR coefList=root:Packages:NIST:coefKWStr |
---|
621 | |
---|
622 | Variable ii,num |
---|
623 | String item |
---|
624 | |
---|
625 | num=ItemsInList(coefList,";") |
---|
626 | ii=0 |
---|
627 | do |
---|
628 | item = StringFromList(ii, coefList, ";") |
---|
629 | |
---|
630 | if(strsearch(item,cwStr,0) != -1) //match |
---|
631 | item = ReplaceString("=",item,".") //replace the = with . |
---|
632 | outStr = ParseFilePath(3, item, ":", 0, 0) // extract file name without extension |
---|
633 | outStr = ReplaceString("Smeared",outStr,"") // replace "Smeared" with null, if it's there |
---|
634 | ii = num + 1 |
---|
635 | endif |
---|
636 | |
---|
637 | ii+=1 |
---|
638 | while(ii<num) |
---|
639 | |
---|
640 | return(outStr+"X") |
---|
641 | end |
---|
642 | |
---|
643 | ////////////////////////////////////////// |
---|
644 | // generates dummy functions of the form: |
---|
645 | // |
---|
646 | //Function BroadPeakX_(cw,x) |
---|
647 | // Wave cw |
---|
648 | // Variable x |
---|
649 | // return(BroadPeakX(cw,x)) |
---|
650 | //End |
---|
651 | // |
---|
652 | // so that I can use the FUNCREF |
---|
653 | // which fails for some reason when I just use the XOP name? |
---|
654 | // |
---|
655 | // |
---|
656 | // not everything ending in X is a model function - trimmed list is in V_DummyFunctions.ipf |
---|
657 | // |
---|
658 | Function V_generateDummyFuncs() |
---|
659 | |
---|
660 | String list = FunctionList("*X",";","KIND:4") |
---|
661 | Variable ii,num |
---|
662 | String item,str |
---|
663 | |
---|
664 | num=ItemsInList(list,";") |
---|
665 | |
---|
666 | NewNotebook/N=Notebook1/F=0 |
---|
667 | |
---|
668 | |
---|
669 | for(ii=0;ii<num;ii+=1) |
---|
670 | item = StringFromList(ii,list,";") |
---|
671 | str = "\r" |
---|
672 | str = "Function "+item+"_(cw,x)\r" |
---|
673 | str += "\tWave cw\r" |
---|
674 | str += "\tVariable x\r" |
---|
675 | str += "\treturn("+item+"(cw,x))\r" |
---|
676 | str += "End\r\r" |
---|
677 | |
---|
678 | //print str |
---|
679 | |
---|
680 | Notebook $"", text=str |
---|
681 | |
---|
682 | endfor |
---|
683 | return(0) |
---|
684 | |
---|
685 | End |
---|