1 | /* |
---|
2 | * MonteCarlo2.c |
---|
3 | * SANSMonteCarlo |
---|
4 | * |
---|
5 | * Created by Steve Kline on 7/1/10. |
---|
6 | * Copyright 2010 NCNR. All rights reserved. |
---|
7 | * |
---|
8 | */ |
---|
9 | |
---|
10 | |
---|
11 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
12 | #include "MonteCarlo.h" |
---|
13 | |
---|
14 | //static int gCallSpinProcess = 1; // Set to 1 to all user abort (cmd dot) and background processing. |
---|
15 | |
---|
16 | // these versions are DIRECT COPIES of the main version in MonteCarlo.c |
---|
17 | // make changes there and copy them here. All that changes here is that the random |
---|
18 | // number calls are different. |
---|
19 | // |
---|
20 | // version X uses ran3 |
---|
21 | // version X2 uses ran1 |
---|
22 | // version X3 uses ran3a |
---|
23 | // version X4 usus ran1a |
---|
24 | |
---|
25 | int |
---|
26 | Monte_SANSX2(MC_ParamsPtr p) { |
---|
27 | double *inputWave; /* pointer to double precision wave data */ |
---|
28 | double *ran_dev; /* pointer to double precision wave data */ |
---|
29 | double *nt; /* pointer to double precision wave data */ |
---|
30 | double *j1; /* pointer to double precision wave data */ |
---|
31 | double *j2; /* pointer to double precision wave data */ |
---|
32 | double *nn; /* pointer to double precision wave data */ |
---|
33 | // double *MC_linear_data; /* pointer to double precision wave data */ |
---|
34 | double *results; /* pointer to double precision wave data */ |
---|
35 | double retVal; //return value |
---|
36 | |
---|
37 | long imon; |
---|
38 | double r1,r2,xCtr,yCtr,sdd,pixSize,thick,wavelength,sig_incoh,sig_sas; |
---|
39 | long ind,index,n_index; |
---|
40 | double qmax,theta_max,q0,zpow; |
---|
41 | long n1,n2,n3; |
---|
42 | double dth,zz,xx,yy,phi; |
---|
43 | double theta,ran,ll,rr; |
---|
44 | long done,find_theta,err; //used as logicals |
---|
45 | long xPixel,yPixel; |
---|
46 | double vx,vy,vz,theta_z; |
---|
47 | double sig_abs,ratio,sig_total; |
---|
48 | double testQ,testPhi,left,delta,dummy,pi; |
---|
49 | double sigabs_0,num_bins; |
---|
50 | long NSingleIncoherent,NSingleCoherent,NScatterEvents,incoherentEvent,coherentEvent; |
---|
51 | long NDoubleCoherent,NMultipleScatter,isOn,xCtr_long,yCtr_long; |
---|
52 | long NMultipleCoherent,NCoherentEvents; |
---|
53 | double deltaLam,v1,v2,currWavelength,rsq,fac; //for simulating wavelength distribution |
---|
54 | double ssd, sourAp, souXX, souYY, magn; //source-to-sample, and source Ap radius for initlal trajectory |
---|
55 | double vz_1,g,yg_d; //gravity terms |
---|
56 | |
---|
57 | |
---|
58 | |
---|
59 | // for accessing the 2D wave data, direct method (see the WaveAccess example XOP) |
---|
60 | waveHndl wavH; |
---|
61 | // int waveType,hState; |
---|
62 | //changed for TK6 |
---|
63 | int numDimensions; |
---|
64 | CountInt dimensionSizes[MAX_DIMENSIONS+1]; |
---|
65 | // char* dataStartPtr; |
---|
66 | // long dataOffset; |
---|
67 | // long numRows, numColumns; |
---|
68 | long numRows_ran_dev; |
---|
69 | // double *dp0, *dp; |
---|
70 | double value[2]; // Pointers used for double data. |
---|
71 | long seed; |
---|
72 | long indices[MAX_DIMENSIONS]; |
---|
73 | |
---|
74 | // char buf[256]; |
---|
75 | |
---|
76 | vz_1 = 3.956e5; //velocity [cm/s] of 1 A neutron |
---|
77 | g = 981.0; //gravity acceleration [cm/s^2] |
---|
78 | |
---|
79 | /* check that wave handles are all valid */ |
---|
80 | if (p->inputWaveH == NIL) { |
---|
81 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
82 | return(NON_EXISTENT_WAVE); |
---|
83 | } |
---|
84 | if (p->ran_devH == NIL) { |
---|
85 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
86 | return(NON_EXISTENT_WAVE); |
---|
87 | } |
---|
88 | if (p->ntH == NIL) { |
---|
89 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
90 | return(NON_EXISTENT_WAVE); |
---|
91 | } |
---|
92 | if (p->j1H == NIL) { |
---|
93 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
94 | return(NON_EXISTENT_WAVE); |
---|
95 | } |
---|
96 | if (p->j2H == NIL) { |
---|
97 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
98 | return(NON_EXISTENT_WAVE); |
---|
99 | } |
---|
100 | if (p->nnH == NIL) { |
---|
101 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
102 | return(NON_EXISTENT_WAVE); |
---|
103 | } |
---|
104 | if (p->MC_linear_dataH == NIL) { |
---|
105 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
106 | return(NON_EXISTENT_WAVE); |
---|
107 | } |
---|
108 | if (p->resultsH == NIL) { |
---|
109 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
110 | return(NON_EXISTENT_WAVE); |
---|
111 | } |
---|
112 | |
---|
113 | p->retVal = 0; |
---|
114 | |
---|
115 | // trusting that all inputs are double PRECISION WAVES!!! |
---|
116 | inputWave = (double*)WaveData(p->inputWaveH); |
---|
117 | ran_dev = (double*)WaveData(p->ran_devH); |
---|
118 | nt = (double*)WaveData(p->ntH); |
---|
119 | j1 = (double*)WaveData(p->j1H); |
---|
120 | j2 = (double*)WaveData(p->j2H); |
---|
121 | nn = (double*)WaveData(p->nnH); |
---|
122 | // MC_linear_data = (double*)WaveData(p->MC_linear_dataH); |
---|
123 | results = (double*)WaveData(p->resultsH); |
---|
124 | |
---|
125 | seed = (long)results[0]; |
---|
126 | |
---|
127 | // sprintf(buf, "input seed = %ld\r", seed); |
---|
128 | // XOPNotice(buf); |
---|
129 | |
---|
130 | if(seed >= 0) { |
---|
131 | seed = -1234509876; |
---|
132 | } |
---|
133 | |
---|
134 | dummy = ran1(&seed); //initialize the random sequence by passing in a negative value |
---|
135 | seed = 12348765; //non-negative after that does nothing |
---|
136 | |
---|
137 | imon = (int)inputWave[0]; |
---|
138 | r1 = inputWave[1]; |
---|
139 | r2 = inputWave[2]; |
---|
140 | xCtr = inputWave[3]; |
---|
141 | yCtr = inputWave[4]; |
---|
142 | sdd = inputWave[5]; |
---|
143 | pixSize = inputWave[6]; |
---|
144 | thick = inputWave[7]; |
---|
145 | wavelength = inputWave[8]; |
---|
146 | sig_incoh = inputWave[9]; |
---|
147 | sig_sas = inputWave[10]; |
---|
148 | deltaLam = inputWave[11]; |
---|
149 | ssd = inputWave[12]; // in cm, like SDD |
---|
150 | sourAp = inputWave[13]; // radius, in cm, like r1 and r2 |
---|
151 | |
---|
152 | xCtr_long = (long)(xCtr+0.5); |
---|
153 | yCtr_long = (long)(yCtr+0.5); |
---|
154 | |
---|
155 | dummy = MDGetWaveScaling(p->ran_devH, 0, &delta, &left); //0 is the rows |
---|
156 | if (retVal = MDGetWaveDimensions(p->ran_devH, &numDimensions, dimensionSizes)) |
---|
157 | return retVal; |
---|
158 | numRows_ran_dev = dimensionSizes[0]; |
---|
159 | |
---|
160 | pi = 4.0*atan(1.0); |
---|
161 | |
---|
162 | // access the 2D wave data for writing using the direct method |
---|
163 | wavH = p->MC_linear_dataH; |
---|
164 | if (wavH == NIL) |
---|
165 | return NOWAV; |
---|
166 | |
---|
167 | |
---|
168 | //scattering power and maximum qvalue to bin |
---|
169 | // zpow = .1 //scattering power, calculated below |
---|
170 | qmax = 4.0*pi/wavelength; //maximum Q to bin 1D data. (A-1) (not really used) |
---|
171 | sigabs_0 = 0.0; // ignore absorption cross section/wavelength [1/(cm A)] |
---|
172 | n_index = 50; // maximum number of scattering events per neutron |
---|
173 | num_bins = 200; //number of 1-D bins (not really used) |
---|
174 | |
---|
175 | //c total SAS cross-section |
---|
176 | // |
---|
177 | zpow = sig_sas*thick; //since I now calculate the sig_sas from the model |
---|
178 | sig_abs = sigabs_0 * wavelength; |
---|
179 | sig_total = sig_abs + sig_sas + sig_incoh; |
---|
180 | // Print "The TOTAL XSECTION. (CM-1) is ",sig_total |
---|
181 | // Print "The TOTAL SAS XSECTION. (CM-1) is ",sig_sas |
---|
182 | // results[0] = sig_total; |
---|
183 | // results[1] = sig_sas; |
---|
184 | // RATIO = SIG_ABS / SIG_TOTAL |
---|
185 | ratio = sig_incoh / sig_total; |
---|
186 | |
---|
187 | theta_max = wavelength*qmax/(2.0*pi); |
---|
188 | //C SET Theta-STEP SIZE. |
---|
189 | dth = theta_max/num_bins; |
---|
190 | // Print "theta bin size = dth = ",dth |
---|
191 | |
---|
192 | //C INITIALIZE COUNTERS. |
---|
193 | n1 = 0; |
---|
194 | n2 = 0; |
---|
195 | n3 = 0; |
---|
196 | NSingleIncoherent = 0; |
---|
197 | NSingleCoherent = 0; |
---|
198 | NDoubleCoherent = 0; |
---|
199 | NMultipleScatter = 0; |
---|
200 | NScatterEvents = 0; |
---|
201 | NMultipleCoherent = 0; |
---|
202 | NCoherentEvents = 0; |
---|
203 | |
---|
204 | isOn = 0; |
---|
205 | |
---|
206 | //C MONITOR LOOP - looping over the number of incedent neutrons |
---|
207 | //note that zz, is the z-position in the sample - NOT the scattering power |
---|
208 | // NOW, start the loop, throwing neutrons at the sample. |
---|
209 | do { |
---|
210 | ////SpinProcess() IS A CALLBACK, and not good for Threading! |
---|
211 | // if ((n1 % 1000 == 0) && gCallSpinProcess && SpinProcess()) { // Spins cursor and allows background processing. |
---|
212 | // retVal = -1; // User aborted. |
---|
213 | // break; |
---|
214 | // } |
---|
215 | |
---|
216 | // vx = 0.0; // Initialize direction vector. |
---|
217 | // vy = 0.0; |
---|
218 | // vz = 1.0; |
---|
219 | |
---|
220 | theta = 0.0; // Initialize scattering angle. |
---|
221 | phi = 0.0; // Intialize azimuthal angle. |
---|
222 | n1 += 1; // Increment total number neutrons counter. |
---|
223 | done = 0; // True when neutron is absorbed or when scattered out of the sample. |
---|
224 | index = 0; // Set counter for number of scattering events. |
---|
225 | zz = 0.0; // Set entering dimension of sample. |
---|
226 | incoherentEvent = 0; |
---|
227 | coherentEvent = 0; |
---|
228 | |
---|
229 | |
---|
230 | // pick point in source aperture area |
---|
231 | do { // Makes sure position is within circle. |
---|
232 | ran = ran1(&seed); //[0,1] |
---|
233 | souXX = 2.0*sourAp*(ran-0.5); //X beam position of neutron entering sample. |
---|
234 | ran = ran1(&seed); //[0,1] |
---|
235 | souYY = 2.0*sourAp*(ran-0.5); //Y beam position ... |
---|
236 | rr = sqrt(souXX*souXX+souYY*souYY); //Radial position of neutron in incident beam. |
---|
237 | } while(rr>sourAp); |
---|
238 | |
---|
239 | // pick point in sample aperture |
---|
240 | do { // Makes sure position is within circle. |
---|
241 | ran = ran1(&seed); //[0,1] |
---|
242 | xx = 2.0*r1*(ran-0.5); //X beam position of neutron entering sample. |
---|
243 | ran = ran1(&seed); //[0,1] |
---|
244 | yy = 2.0*r1*(ran-0.5); //Y beam position ... |
---|
245 | rr = sqrt(xx*xx+yy*yy); //Radial position of neutron in incident beam. |
---|
246 | } while(rr>r1); |
---|
247 | |
---|
248 | //pick the wavelength out of the wavelength spread, approximate as a gaussian |
---|
249 | // from NR - pg 288. Needs random # from [0,1]. del is deltaLam/lam (as FWHM) and the |
---|
250 | // 2.35 converts to a gaussian std dev. |
---|
251 | do { |
---|
252 | v1=2.0*ran1(&seed)-1.0; |
---|
253 | v2=2.0*ran1(&seed)-1.0; |
---|
254 | rsq=v1*v1+v2*v2; |
---|
255 | } while (rsq >= 1.0 || rsq == 0.0); |
---|
256 | fac=sqrt(-2.0*log10(rsq)/rsq); //be sure to use log10() here, to duplicate the Igor code |
---|
257 | |
---|
258 | // gset=v1*fac //technically, I'm throwing away one of the two values |
---|
259 | currWavelength = (v2*fac)*deltaLam*wavelength/2.35 + wavelength; |
---|
260 | |
---|
261 | magn = sqrt((souXX - xx)*(souXX - xx) + (souYY - yy)*(souYY - yy) + ssd*ssd); |
---|
262 | vx = (souXX - xx)/magn; // Initialize direction vector. |
---|
263 | vy = (souYY - yy)/magn; |
---|
264 | vz = (ssd - 0.)/magn; |
---|
265 | |
---|
266 | do { //Scattering Loop, will exit when "done" == 1 |
---|
267 | // keep scattering multiple times until the neutron exits the sample |
---|
268 | ran = ran1(&seed); //[0,1] RANDOM NUMBER FOR DETERMINING PATH LENGTH |
---|
269 | ll = path_len(ran,sig_total); |
---|
270 | //Determine new scattering direction vector. |
---|
271 | err = NewDirection(&vx,&vy,&vz,theta,phi); //vx,vy,vz updated, theta, phi unchanged by function |
---|
272 | |
---|
273 | //X,Y,Z-POSITION OF SCATTERING EVENT. |
---|
274 | xx += ll*vx; |
---|
275 | yy += ll*vy; |
---|
276 | zz += ll*vz; |
---|
277 | rr = sqrt(xx*xx+yy*yy); //radial position of scattering event. |
---|
278 | |
---|
279 | //sprintf(buf, "xx,yy,zz,vx,vy,vz,ll = %g %g %g %g %g %g %g\r",xx,yy,zz,vx,vy,vz,ll); |
---|
280 | //XOPNotice(buf); |
---|
281 | |
---|
282 | //Check whether interaction occurred within sample volume. |
---|
283 | if (((zz > 0.0) && (zz < thick)) && (rr < r2)) { |
---|
284 | //NEUTRON INTERACTED. |
---|
285 | //sprintf(buf,"neutron interacted\r"); |
---|
286 | //XOPNotice(buf); |
---|
287 | |
---|
288 | index += 1; //Increment counter of scattering events. |
---|
289 | if (index == 1) { |
---|
290 | n2 += 1; //Increment # of scat. neutrons |
---|
291 | } |
---|
292 | ran = ran1(&seed); //[0,1] |
---|
293 | //Split neutron interactions into scattering and absorption events |
---|
294 | if (ran > ratio ) { //C NEUTRON SCATTERED coherently |
---|
295 | //sprintf(buf,"neutron scatters coherently\r"); |
---|
296 | //XOPNotice(buf); |
---|
297 | coherentEvent += 1; |
---|
298 | find_theta = 0; //false |
---|
299 | do { |
---|
300 | // pick a q-value from the deviate function |
---|
301 | // pnt2x truncates the point to an integer before returning the x |
---|
302 | // so get it from the wave scaling instead |
---|
303 | // q0 =left + binarysearchinterp(ran_dev,ran1(seed))*delta; |
---|
304 | |
---|
305 | q0 =left + locate_interp(ran_dev,numRows_ran_dev,ran1(&seed))*delta; |
---|
306 | theta = q0/2.0/pi*currWavelength; //SAS approximation |
---|
307 | |
---|
308 | find_theta = 1; //always accept |
---|
309 | |
---|
310 | //sprintf(buf, "after locate_interp call q0 = %g, theta = %g,left = %g,delta = %g\r",q0,theta,left,delta); |
---|
311 | //XOPNotice(buf); |
---|
312 | |
---|
313 | } while(!find_theta); |
---|
314 | |
---|
315 | ran = ran1(&seed); //[0,1] |
---|
316 | phi = 2.0*pi*ran; //Chooses azimuthal scattering angle. |
---|
317 | } else { |
---|
318 | //NEUTRON scattered incoherently |
---|
319 | //sprintf(buf,"neutron scatters incoherent\r"); |
---|
320 | //XOPNotice(buf); |
---|
321 | incoherentEvent += 1; |
---|
322 | // phi and theta are random over the entire sphere of scattering |
---|
323 | // !can't just choose random theta and phi, won't be random over sphere solid angle |
---|
324 | |
---|
325 | ran = ran1(&seed); //[0,1] |
---|
326 | theta = acos(2.0*ran-1); |
---|
327 | |
---|
328 | ran = ran1(&seed); //[0,1] |
---|
329 | phi = 2.0*pi*ran; //Chooses azimuthal scattering angle. |
---|
330 | } //(ran > ratio) |
---|
331 | } else { |
---|
332 | //NEUTRON ESCAPES FROM SAMPLE -- bin it somewhere |
---|
333 | done = 1; //done = true, will exit from loop |
---|
334 | //Increment #scattering events array |
---|
335 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
336 | indices[0] =index; //this sets access to nn[index] |
---|
337 | if (index <= n_index) { |
---|
338 | if (retVal = MDGetNumericWavePointValue(p->nnH, indices, value)) |
---|
339 | return retVal; |
---|
340 | value[0] += 1; // add one to the value |
---|
341 | if (retVal = MDSetNumericWavePointValue(p->nnH, indices, value)) |
---|
342 | return retVal; |
---|
343 | // nn[index] += 1; |
---|
344 | } |
---|
345 | |
---|
346 | // calculate fall due to gravity (in cm) (note that it is negative) |
---|
347 | yg_d = -0.5*g*sdd*(ssd+sdd)*(currWavelength/vz_1)*(currWavelength/vz_1); |
---|
348 | |
---|
349 | if( index != 0) { //neutron was scattered, figure out where it went |
---|
350 | theta_z = acos(vz); // Angle (= 2theta) WITH respect to z axis. |
---|
351 | testQ = 2.0*pi*sin(theta_z)/currWavelength; |
---|
352 | |
---|
353 | // pick a random phi angle, and see if it lands on the detector |
---|
354 | // since the scattering is isotropic, I can safely pick a new, random value |
---|
355 | // this would not be true if simulating anisotropic scattering. |
---|
356 | testPhi = ran1(&seed)*2.0*pi; |
---|
357 | |
---|
358 | // is it on the detector? |
---|
359 | FindPixel(testQ,testPhi,currWavelength,yg_d,sdd,pixSize,xCtr,yCtr,&xPixel,&yPixel); |
---|
360 | |
---|
361 | if(xPixel != -1 && yPixel != -1) { |
---|
362 | isOn += 1; |
---|
363 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
364 | indices[0] = xPixel; |
---|
365 | indices[1] = yPixel; |
---|
366 | if (retVal = MDGetNumericWavePointValue(wavH, indices, value)) |
---|
367 | return retVal; |
---|
368 | value[0] += 1; // Real part |
---|
369 | if (retVal = MDSetNumericWavePointValue(wavH, indices, value)) |
---|
370 | return retVal; |
---|
371 | //if(index==1) // only the single scattering events |
---|
372 | //dp = dp0 + xPixel + yPixel*numColumns; //offset the pointer to the exact memory location |
---|
373 | //*dp += 1; //increment the value there |
---|
374 | //endif |
---|
375 | } |
---|
376 | |
---|
377 | |
---|
378 | /* is this causing me a problem since I'm not locking these? Probably not, since it crashes even if I comment these out... */ |
---|
379 | if(theta_z < theta_max) { |
---|
380 | //Choose index for scattering angle array. |
---|
381 | //IND = NINT(THETA_z/DTH + 0.4999999) |
---|
382 | ind = (long)(theta_z/dth + 0.4999999); //round is eqivalent to nint() |
---|
383 | nt[ind] += 1; //Increment bin for angle. |
---|
384 | //Increment angle array for single scattering events. |
---|
385 | if (index == 1) { |
---|
386 | j1[ind] += 1; |
---|
387 | } |
---|
388 | //Increment angle array for double scattering events. |
---|
389 | if (index == 2) { |
---|
390 | j2[ind] += 1; |
---|
391 | } |
---|
392 | } |
---|
393 | /**/ |
---|
394 | |
---|
395 | // increment all of the counters now since done==1 here and I'm sure to exit and get another neutron |
---|
396 | NScatterEvents += index; //total number of scattering events |
---|
397 | if(index == 1 && incoherentEvent == 1) { |
---|
398 | NSingleIncoherent += 1; |
---|
399 | } |
---|
400 | if(index == 1 && coherentEvent == 1) { |
---|
401 | NSingleCoherent += 1; |
---|
402 | } |
---|
403 | if(index == 2 && coherentEvent == 1 && incoherentEvent == 0) { |
---|
404 | NDoubleCoherent += 1; |
---|
405 | } |
---|
406 | if(index > 1) { |
---|
407 | NMultipleScatter += 1; |
---|
408 | } |
---|
409 | if(coherentEvent >= 1 && incoherentEvent == 0) { |
---|
410 | NCoherentEvents += 1; |
---|
411 | } |
---|
412 | if(coherentEvent > 1 && incoherentEvent == 0) { |
---|
413 | NMultipleCoherent += 1; |
---|
414 | } |
---|
415 | |
---|
416 | } else { // index was zero, neutron must be transmitted, so just increment the proper counters and data |
---|
417 | isOn += 1; |
---|
418 | nt[0] += 1; |
---|
419 | |
---|
420 | //figure out where it landed |
---|
421 | theta_z = acos(vz); // Angle (= 2theta) WITH respect to z axis. |
---|
422 | testQ = 2.0*pi*sin(theta_z)/currWavelength; |
---|
423 | |
---|
424 | // pick a random phi angle, and see if it lands on the detector |
---|
425 | // since the scattering is isotropic, I can safely pick a new, random value |
---|
426 | // this would not be true if simulating anisotropic scattering. |
---|
427 | testPhi = ran1(&seed)*2.0*pi; |
---|
428 | |
---|
429 | // is it on the detector? |
---|
430 | FindPixel(testQ,testPhi,currWavelength,yg_d,sdd,pixSize,xCtr,yCtr,&xPixel,&yPixel); |
---|
431 | |
---|
432 | if(xPixel != -1 && yPixel != -1) { |
---|
433 | isOn += 1; |
---|
434 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
435 | indices[0] = xPixel; |
---|
436 | indices[1] = yPixel; |
---|
437 | if (retVal = MDGetNumericWavePointValue(wavH, indices, value)) |
---|
438 | return retVal; |
---|
439 | value[0] += 1; // Real part |
---|
440 | if (retVal = MDSetNumericWavePointValue(wavH, indices, value)) |
---|
441 | return retVal; |
---|
442 | //if(index==1) // only the single scattering events |
---|
443 | //dp = dp0 + xPixel + yPixel*numColumns; //offset the pointer to the exact memory location |
---|
444 | //*dp += 1; //increment the value there |
---|
445 | //endif |
---|
446 | } |
---|
447 | |
---|
448 | } |
---|
449 | } |
---|
450 | } while (!done); |
---|
451 | } while(n1 < imon); |
---|
452 | |
---|
453 | // assign the results to the wave |
---|
454 | |
---|
455 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
456 | value[0] = (double)n1; |
---|
457 | indices[0] = 0; |
---|
458 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
459 | return retVal; |
---|
460 | value[0] = (double)n2; |
---|
461 | indices[0] = 1; |
---|
462 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
463 | return retVal; |
---|
464 | value[0] = (double)isOn; |
---|
465 | indices[0] = 2; |
---|
466 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
467 | return retVal; |
---|
468 | value[0] = (double)NScatterEvents; |
---|
469 | indices[0] = 3; |
---|
470 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
471 | return retVal; |
---|
472 | value[0] = (double)NSingleCoherent; |
---|
473 | indices[0] = 4; |
---|
474 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
475 | return retVal; |
---|
476 | value[0] = (double)NMultipleCoherent; |
---|
477 | indices[0] = 5; |
---|
478 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
479 | return retVal; |
---|
480 | value[0] = (double)NMultipleScatter; |
---|
481 | indices[0] = 6; |
---|
482 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
483 | return retVal; |
---|
484 | value[0] = (double)NCoherentEvents; |
---|
485 | indices[0] = 7; |
---|
486 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
487 | return retVal; |
---|
488 | |
---|
489 | // WaveHandleModified(wavH); // Inform Igor that we have changed the wave. (CALLBACK! needed, but not allowed in Threading) |
---|
490 | |
---|
491 | return(0); |
---|
492 | } |
---|
493 | |
---|