1 | /* |
---|
2 | * MonteCarlo3.c |
---|
3 | * SANSMonteCarlo |
---|
4 | * |
---|
5 | * Created by Steve Kline on 7/1/10. |
---|
6 | * Copyright 2010 NCNR. All rights reserved. |
---|
7 | * |
---|
8 | */ |
---|
9 | |
---|
10 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
11 | #include "MonteCarlo.h" |
---|
12 | |
---|
13 | //static int gCallSpinProcess = 1; // Set to 1 to all user abort (cmd dot) and background processing. |
---|
14 | |
---|
15 | // these versions are DIRECT COPIES of the main version in MonteCarlo.c |
---|
16 | // make changes there and copy them here. All that changes here is that the random |
---|
17 | // number calls are different. |
---|
18 | // |
---|
19 | // version X uses ran3 |
---|
20 | // version X2 uses ran1 |
---|
21 | // version X3 uses ran3a |
---|
22 | // version X4 usus ran1a |
---|
23 | |
---|
24 | int |
---|
25 | Monte_SANSX3(MC_ParamsPtr p) { |
---|
26 | double *inputWave; /* pointer to double precision wave data */ |
---|
27 | double *ran_dev; /* pointer to double precision wave data */ |
---|
28 | double *nt; /* pointer to double precision wave data */ |
---|
29 | double *j1; /* pointer to double precision wave data */ |
---|
30 | double *j2; /* pointer to double precision wave data */ |
---|
31 | double *nn; /* pointer to double precision wave data */ |
---|
32 | // double *MC_linear_data; /* pointer to double precision wave data */ |
---|
33 | double *results; /* pointer to double precision wave data */ |
---|
34 | double retVal; //return value |
---|
35 | |
---|
36 | long imon; |
---|
37 | double r1,r2,xCtr,yCtr,sdd,pixSize,thick,wavelength,sig_incoh,sig_sas; |
---|
38 | long ind,index,n_index; |
---|
39 | double qmax,theta_max,q0,zpow; |
---|
40 | long n1,n2,n3; |
---|
41 | double dth,zz,xx,yy,phi; |
---|
42 | double theta,ran,ll,rr; |
---|
43 | long done,find_theta,err; //used as logicals |
---|
44 | long xPixel,yPixel; |
---|
45 | double vx,vy,vz,theta_z; |
---|
46 | double sig_abs,ratio,sig_total; |
---|
47 | double testQ,testPhi,left,delta,dummy,pi; |
---|
48 | double sigabs_0,num_bins; |
---|
49 | long NSingleIncoherent,NSingleCoherent,NScatterEvents,incoherentEvent,coherentEvent; |
---|
50 | long NDoubleCoherent,NMultipleScatter,isOn,xCtr_long,yCtr_long; |
---|
51 | long NMultipleCoherent,NCoherentEvents; |
---|
52 | double deltaLam,v1,v2,currWavelength,rsq,fac; //for simulating wavelength distribution |
---|
53 | |
---|
54 | |
---|
55 | // for accessing the 2D wave data, direct method (see the WaveAccess example XOP) |
---|
56 | waveHndl wavH; |
---|
57 | // int waveType,hState; |
---|
58 | long numDimensions; |
---|
59 | long dimensionSizes[MAX_DIMENSIONS+1]; |
---|
60 | // char* dataStartPtr; |
---|
61 | // long dataOffset; |
---|
62 | // long numRows, numColumns; |
---|
63 | long numRows_ran_dev; |
---|
64 | // double *dp0, *dp; |
---|
65 | double value[2]; // Pointers used for double data. |
---|
66 | long seed; |
---|
67 | long indices[MAX_DIMENSIONS]; |
---|
68 | |
---|
69 | // char buf[256]; |
---|
70 | |
---|
71 | /* check that wave handles are all valid */ |
---|
72 | if (p->inputWaveH == NIL) { |
---|
73 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
74 | return(NON_EXISTENT_WAVE); |
---|
75 | } |
---|
76 | if (p->ran_devH == NIL) { |
---|
77 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
78 | return(NON_EXISTENT_WAVE); |
---|
79 | } |
---|
80 | if (p->ntH == NIL) { |
---|
81 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
82 | return(NON_EXISTENT_WAVE); |
---|
83 | } |
---|
84 | if (p->j1H == NIL) { |
---|
85 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
86 | return(NON_EXISTENT_WAVE); |
---|
87 | } |
---|
88 | if (p->j2H == NIL) { |
---|
89 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
90 | return(NON_EXISTENT_WAVE); |
---|
91 | } |
---|
92 | if (p->nnH == NIL) { |
---|
93 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
94 | return(NON_EXISTENT_WAVE); |
---|
95 | } |
---|
96 | if (p->MC_linear_dataH == NIL) { |
---|
97 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
98 | return(NON_EXISTENT_WAVE); |
---|
99 | } |
---|
100 | if (p->resultsH == NIL) { |
---|
101 | SetNaN64(&p->retVal); /* return NaN if wave is not valid */ |
---|
102 | return(NON_EXISTENT_WAVE); |
---|
103 | } |
---|
104 | |
---|
105 | p->retVal = 0; |
---|
106 | |
---|
107 | // trusting that all inputs are DOUBLE PRECISION WAVES!!! |
---|
108 | inputWave = WaveData(p->inputWaveH); |
---|
109 | ran_dev = WaveData(p->ran_devH); |
---|
110 | nt = WaveData(p->ntH); |
---|
111 | j1 = WaveData(p->j1H); |
---|
112 | j2 = WaveData(p->j2H); |
---|
113 | nn = WaveData(p->nnH); |
---|
114 | // MC_linear_data = WaveData(p->MC_linear_dataH); |
---|
115 | results = WaveData(p->resultsH); |
---|
116 | |
---|
117 | seed = (long)results[0]; |
---|
118 | |
---|
119 | // sprintf(buf, "input seed = %ld\r", seed); |
---|
120 | // XOPNotice(buf); |
---|
121 | |
---|
122 | if(seed >= 0) { |
---|
123 | seed = -1234509876; |
---|
124 | } |
---|
125 | |
---|
126 | dummy = ran3a(&seed); //initialize the random sequence by passing in a negative value |
---|
127 | seed = 12348765; //non-negative after that does nothing |
---|
128 | |
---|
129 | imon = (int)inputWave[0]; |
---|
130 | r1 = inputWave[1]; |
---|
131 | r2 = inputWave[2]; |
---|
132 | xCtr = inputWave[3]; |
---|
133 | yCtr = inputWave[4]; |
---|
134 | sdd = inputWave[5]; |
---|
135 | pixSize = inputWave[6]; |
---|
136 | thick = inputWave[7]; |
---|
137 | wavelength = inputWave[8]; |
---|
138 | sig_incoh = inputWave[9]; |
---|
139 | sig_sas = inputWave[10]; |
---|
140 | deltaLam = inputWave[11]; |
---|
141 | xCtr_long = (long)(xCtr+0.5); |
---|
142 | yCtr_long = (long)(yCtr+0.5); |
---|
143 | |
---|
144 | dummy = MDGetWaveScaling(p->ran_devH, 0, &delta, &left); //0 is the rows |
---|
145 | if (retVal = MDGetWaveDimensions(p->ran_devH, &numDimensions, dimensionSizes)) |
---|
146 | return retVal; |
---|
147 | numRows_ran_dev = dimensionSizes[0]; |
---|
148 | |
---|
149 | pi = 4.0*atan(1.0); |
---|
150 | |
---|
151 | // access the 2D wave data for writing using the direct method |
---|
152 | wavH = p->MC_linear_dataH; |
---|
153 | if (wavH == NIL) |
---|
154 | return NOWAV; |
---|
155 | |
---|
156 | // waveType = WaveType(wavH); |
---|
157 | // if (waveType & NT_CMPLX) |
---|
158 | // return NO_COMPLEX_WAVE; |
---|
159 | // if (waveType==TEXT_WAVE_TYPE) |
---|
160 | // return NUMERIC_ACCESS_ON_TEXT_WAVE; |
---|
161 | // if (retVal = MDGetWaveDimensions(wavH, &numDimensions, dimensionSizes)) |
---|
162 | // return retVal; |
---|
163 | // numRows = dimensionSizes[0]; |
---|
164 | // numColumns = dimensionSizes[1]; |
---|
165 | |
---|
166 | // if (retVal = MDAccessNumericWaveData(wavH, kMDWaveAccessMode0, &dataOffset)) |
---|
167 | // return retVal; |
---|
168 | |
---|
169 | // hState = MoveLockHandle(wavH); // So wave data can't move. Remember to call HSetState when done. |
---|
170 | // dataStartPtr = (char*)(*wavH) + dataOffset; |
---|
171 | // dp0 = (double*)dataStartPtr; // Pointer to the start of the 2D wave data. |
---|
172 | |
---|
173 | //scattering power and maximum qvalue to bin |
---|
174 | // zpow = .1 //scattering power, calculated below |
---|
175 | qmax = 4.0*pi/wavelength; //maximum Q to bin 1D data. (A-1) (not really used) |
---|
176 | sigabs_0 = 0.0; // ignore absorption cross section/wavelength [1/(cm A)] |
---|
177 | n_index = 50; // maximum number of scattering events per neutron |
---|
178 | num_bins = 200; //number of 1-D bins (not really used) |
---|
179 | |
---|
180 | //c total SAS cross-section |
---|
181 | // |
---|
182 | zpow = sig_sas*thick; //since I now calculate the sig_sas from the model |
---|
183 | sig_abs = sigabs_0 * wavelength; |
---|
184 | sig_total = sig_abs + sig_sas + sig_incoh; |
---|
185 | // Print "The TOTAL XSECTION. (CM-1) is ",sig_total |
---|
186 | // Print "The TOTAL SAS XSECTION. (CM-1) is ",sig_sas |
---|
187 | // results[0] = sig_total; |
---|
188 | // results[1] = sig_sas; |
---|
189 | // RATIO = SIG_ABS / SIG_TOTAL |
---|
190 | ratio = sig_incoh / sig_total; |
---|
191 | |
---|
192 | theta_max = wavelength*qmax/(2*pi); |
---|
193 | //C SET Theta-STEP SIZE. |
---|
194 | dth = theta_max/num_bins; |
---|
195 | // Print "theta bin size = dth = ",dth |
---|
196 | |
---|
197 | //C INITIALIZE COUNTERS. |
---|
198 | n1 = 0; |
---|
199 | n2 = 0; |
---|
200 | n3 = 0; |
---|
201 | NSingleIncoherent = 0; |
---|
202 | NSingleCoherent = 0; |
---|
203 | NDoubleCoherent = 0; |
---|
204 | NMultipleScatter = 0; |
---|
205 | NScatterEvents = 0; |
---|
206 | NMultipleCoherent = 0; |
---|
207 | NCoherentEvents = 0; |
---|
208 | |
---|
209 | isOn = 0; |
---|
210 | |
---|
211 | //C MONITOR LOOP - looping over the number of incedent neutrons |
---|
212 | //note that zz, is the z-position in the sample - NOT the scattering power |
---|
213 | // NOW, start the loop, throwing neutrons at the sample. |
---|
214 | do { |
---|
215 | ////SpinProcess() IS A CALLBACK, and not good for Threading! |
---|
216 | // if ((n1 % 1000 == 0) && gCallSpinProcess && SpinProcess()) { // Spins cursor and allows background processing. |
---|
217 | // retVal = -1; // User aborted. |
---|
218 | // break; |
---|
219 | // } |
---|
220 | |
---|
221 | vx = 0.0; // Initialize direction vector. |
---|
222 | vy = 0.0; |
---|
223 | vz = 1.0; |
---|
224 | |
---|
225 | theta = 0.0; // Initialize scattering angle. |
---|
226 | phi = 0.0; // Intialize azimuthal angle. |
---|
227 | n1 += 1; // Increment total number neutrons counter. |
---|
228 | done = 0; // True when neutron is absorbed or when scattered out of the sample. |
---|
229 | index = 0; // Set counter for number of scattering events. |
---|
230 | zz = 0.0; // Set entering dimension of sample. |
---|
231 | incoherentEvent = 0; |
---|
232 | coherentEvent = 0; |
---|
233 | |
---|
234 | do { // Makes sure position is within circle. |
---|
235 | ran = ran3a(&seed); //[0,1] |
---|
236 | xx = 2.0*r1*(ran-0.5); //X beam position of neutron entering sample. |
---|
237 | ran = ran3a(&seed); //[0,1] |
---|
238 | yy = 2.0*r1*(ran-0.5); //Y beam position ... |
---|
239 | rr = sqrt(xx*xx+yy*yy); //Radial position of neutron in incident beam. |
---|
240 | } while(rr>r1); |
---|
241 | |
---|
242 | //pick the wavelength out of the wavelength spread, approximate as a gaussian |
---|
243 | // from NR - pg 288. Needs random # from [0,1]. del is deltaLam/lam (as FWHM) and the |
---|
244 | // 2.35 converts to a gaussian std dev. |
---|
245 | do { |
---|
246 | v1=2.0*ran3a(&seed)-1.0; |
---|
247 | v2=2.0*ran3a(&seed)-1.0; |
---|
248 | rsq=v1*v1+v2*v2; |
---|
249 | } while (rsq >= 1.0 || rsq == 0.0); |
---|
250 | fac=sqrt(-2.0*log(rsq)/rsq); |
---|
251 | |
---|
252 | // gset=v1*fac //technically, I'm throwing away one of the two values |
---|
253 | currWavelength = (v2*fac)*deltaLam*wavelength/2.35 + wavelength; |
---|
254 | |
---|
255 | do { //Scattering Loop, will exit when "done" == 1 |
---|
256 | // keep scattering multiple times until the neutron exits the sample |
---|
257 | ran = ran3a(&seed); //[0,1] RANDOM NUMBER FOR DETERMINING PATH LENGTH |
---|
258 | ll = path_len(ran,sig_total); |
---|
259 | //Determine new scattering direction vector. |
---|
260 | err = NewDirection(&vx,&vy,&vz,theta,phi); //vx,vy,vz updated, theta, phi unchanged by function |
---|
261 | |
---|
262 | //X,Y,Z-POSITION OF SCATTERING EVENT. |
---|
263 | xx += ll*vx; |
---|
264 | yy += ll*vy; |
---|
265 | zz += ll*vz; |
---|
266 | rr = sqrt(xx*xx+yy*yy); //radial position of scattering event. |
---|
267 | |
---|
268 | //sprintf(buf, "xx,yy,zz,vx,vy,vz,ll = %g %g %g %g %g %g %g\r",xx,yy,zz,vx,vy,vz,ll); |
---|
269 | //XOPNotice(buf); |
---|
270 | |
---|
271 | //Check whether interaction occurred within sample volume. |
---|
272 | if (((zz > 0.0) && (zz < thick)) && (rr < r2)) { |
---|
273 | //NEUTRON INTERACTED. |
---|
274 | //sprintf(buf,"neutron interacted\r"); |
---|
275 | //XOPNotice(buf); |
---|
276 | |
---|
277 | index += 1; //Increment counter of scattering events. |
---|
278 | if (index == 1) { |
---|
279 | n2 += 1; //Increment # of scat. neutrons |
---|
280 | } |
---|
281 | ran = ran3a(&seed); //[0,1] |
---|
282 | //Split neutron interactions into scattering and absorption events |
---|
283 | if (ran > ratio ) { //C NEUTRON SCATTERED coherently |
---|
284 | //sprintf(buf,"neutron scatters coherently\r"); |
---|
285 | //XOPNotice(buf); |
---|
286 | coherentEvent += 1; |
---|
287 | find_theta = 0; //false |
---|
288 | do { |
---|
289 | // pick a q-value from the deviate function |
---|
290 | // pnt2x truncates the point to an integer before returning the x |
---|
291 | // so get it from the wave scaling instead |
---|
292 | // q0 =left + binarysearchinterp(ran_dev,ran3a(seed))*delta; |
---|
293 | |
---|
294 | q0 =left + locate_interp(ran_dev,numRows_ran_dev,ran3a(&seed))*delta; |
---|
295 | theta = q0/2/pi*currWavelength; //SAS approximation |
---|
296 | |
---|
297 | find_theta = 1; //always accept |
---|
298 | |
---|
299 | //sprintf(buf, "after locate_interp call q0 = %g, theta = %g,left = %g,delta = %g\r",q0,theta,left,delta); |
---|
300 | //XOPNotice(buf); |
---|
301 | |
---|
302 | } while(!find_theta); |
---|
303 | |
---|
304 | ran = ran3a(&seed); //[0,1] |
---|
305 | phi = 2.0*pi*ran; //Chooses azimuthal scattering angle. |
---|
306 | } else { |
---|
307 | //NEUTRON scattered incoherently |
---|
308 | //sprintf(buf,"neutron scatters incoherent\r"); |
---|
309 | //XOPNotice(buf); |
---|
310 | incoherentEvent += 1; |
---|
311 | // phi and theta are random over the entire sphere of scattering |
---|
312 | // !can't just choose random theta and phi, won't be random over sphere solid angle |
---|
313 | |
---|
314 | ran = ran3a(&seed); //[0,1] |
---|
315 | theta = acos(2.0*ran-1); |
---|
316 | |
---|
317 | ran = ran3a(&seed); //[0,1] |
---|
318 | phi = 2.0*pi*ran; //Chooses azimuthal scattering angle. |
---|
319 | } //(ran > ratio) |
---|
320 | } else { |
---|
321 | //NEUTRON ESCAPES FROM SAMPLE -- bin it somewhere |
---|
322 | done = 1; //done = true, will exit from loop |
---|
323 | //Increment #scattering events array |
---|
324 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
325 | indices[0] =index; //this sets access to nn[index] |
---|
326 | if (index <= n_index) { |
---|
327 | if (retVal = MDGetNumericWavePointValue(p->nnH, indices, value)) |
---|
328 | return retVal; |
---|
329 | value[0] += 1; // add one to the value |
---|
330 | if (retVal = MDSetNumericWavePointValue(p->nnH, indices, value)) |
---|
331 | return retVal; |
---|
332 | // nn[index] += 1; |
---|
333 | } |
---|
334 | |
---|
335 | if( index != 0) { //neutron was scattered, figure out where it went |
---|
336 | theta_z = acos(vz); // Angle (= 2theta) WITH respect to z axis. |
---|
337 | testQ = 2*pi*sin(theta_z)/currWavelength; |
---|
338 | |
---|
339 | // pick a random phi angle, and see if it lands on the detector |
---|
340 | // since the scattering is isotropic, I can safely pick a new, random value |
---|
341 | // this would not be true if simulating anisotropic scattering. |
---|
342 | testPhi = ran3a(&seed)*2*pi; |
---|
343 | |
---|
344 | // is it on the detector? |
---|
345 | FindPixel(testQ,testPhi,currWavelength,sdd,pixSize,xCtr,yCtr,&xPixel,&yPixel); |
---|
346 | |
---|
347 | if(xPixel != -1 && yPixel != -1) { |
---|
348 | isOn += 1; |
---|
349 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
350 | indices[0] = xPixel; |
---|
351 | indices[1] = yPixel; |
---|
352 | if (retVal = MDGetNumericWavePointValue(wavH, indices, value)) |
---|
353 | return retVal; |
---|
354 | value[0] += 1; // Real part |
---|
355 | if (retVal = MDSetNumericWavePointValue(wavH, indices, value)) |
---|
356 | return retVal; |
---|
357 | //if(index==1) // only the single scattering events |
---|
358 | //dp = dp0 + xPixel + yPixel*numColumns; //offset the pointer to the exact memory location |
---|
359 | //*dp += 1; //increment the value there |
---|
360 | //endif |
---|
361 | } |
---|
362 | |
---|
363 | |
---|
364 | /* is this causing me a problem since I'm not locking these? Probably not, since it crashes even if I comment these out... */ |
---|
365 | if(theta_z < theta_max) { |
---|
366 | //Choose index for scattering angle array. |
---|
367 | //IND = NINT(THETA_z/DTH + 0.4999999) |
---|
368 | ind = (long)(theta_z/dth + 0.4999999); //round is eqivalent to nint() |
---|
369 | nt[ind] += 1; //Increment bin for angle. |
---|
370 | //Increment angle array for single scattering events. |
---|
371 | if (index == 1) { |
---|
372 | j1[ind] += 1; |
---|
373 | } |
---|
374 | //Increment angle array for double scattering events. |
---|
375 | if (index == 2) { |
---|
376 | j2[ind] += 1; |
---|
377 | } |
---|
378 | } |
---|
379 | /**/ |
---|
380 | |
---|
381 | // increment all of the counters now since done==1 here and I'm sure to exit and get another neutron |
---|
382 | NScatterEvents += index; //total number of scattering events |
---|
383 | if(index == 1 && incoherentEvent == 1) { |
---|
384 | NSingleIncoherent += 1; |
---|
385 | } |
---|
386 | if(index == 1 && coherentEvent == 1) { |
---|
387 | NSingleCoherent += 1; |
---|
388 | } |
---|
389 | if(index == 2 && coherentEvent == 1 && incoherentEvent == 0) { |
---|
390 | NDoubleCoherent += 1; |
---|
391 | } |
---|
392 | if(index > 1) { |
---|
393 | NMultipleScatter += 1; |
---|
394 | } |
---|
395 | if(coherentEvent >= 1 && incoherentEvent == 0) { |
---|
396 | NCoherentEvents += 1; |
---|
397 | } |
---|
398 | if(coherentEvent > 1 && incoherentEvent == 0) { |
---|
399 | NMultipleCoherent += 1; |
---|
400 | } |
---|
401 | |
---|
402 | } else { // index was zero, neutron must be transmitted, so just increment the proper counters and data |
---|
403 | isOn += 1; |
---|
404 | nt[0] += 1; |
---|
405 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
406 | //indices[0] = xCtr_long; //don't put everything in one pixel |
---|
407 | //indices[1] = yCtr_long; |
---|
408 | indices[0] = (long)(xCtr+xx/pixSize+0.5); |
---|
409 | indices[1] = (long)(yCtr+yy/pixSize+0.5); |
---|
410 | // check for valid indices - got an XOP error, probably from here |
---|
411 | if(indices[0] > 127) indices[0] = 127; |
---|
412 | if(indices[0] < 0) indices[0] = 0; |
---|
413 | if(indices[1] > 127) indices[1] = 127; |
---|
414 | if(indices[1] < 0) indices[1] = 0; |
---|
415 | |
---|
416 | if (retVal = MDGetNumericWavePointValue(wavH, indices, value)) |
---|
417 | return retVal; |
---|
418 | value[0] += 1; // Real part |
---|
419 | if (retVal = MDSetNumericWavePointValue(wavH, indices, value)) |
---|
420 | return retVal; |
---|
421 | } |
---|
422 | } |
---|
423 | } while (!done); |
---|
424 | } while(n1 < imon); |
---|
425 | |
---|
426 | // assign the results to the wave |
---|
427 | |
---|
428 | MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions. |
---|
429 | value[0] = (double)n1; |
---|
430 | indices[0] = 0; |
---|
431 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
432 | return retVal; |
---|
433 | value[0] = (double)n2; |
---|
434 | indices[0] = 1; |
---|
435 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
436 | return retVal; |
---|
437 | value[0] = (double)isOn; |
---|
438 | indices[0] = 2; |
---|
439 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
440 | return retVal; |
---|
441 | value[0] = (double)NScatterEvents; |
---|
442 | indices[0] = 3; |
---|
443 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
444 | return retVal; |
---|
445 | value[0] = (double)NSingleCoherent; |
---|
446 | indices[0] = 4; |
---|
447 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
448 | return retVal; |
---|
449 | value[0] = (double)NMultipleCoherent; |
---|
450 | indices[0] = 5; |
---|
451 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
452 | return retVal; |
---|
453 | value[0] = (double)NMultipleScatter; |
---|
454 | indices[0] = 6; |
---|
455 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
456 | return retVal; |
---|
457 | value[0] = (double)NCoherentEvents; |
---|
458 | indices[0] = 7; |
---|
459 | if (retVal = MDSetNumericWavePointValue(p->resultsH, indices, value)) |
---|
460 | return retVal; |
---|
461 | |
---|
462 | // HSetState((Handle)wavH, hState); //release the handle of the 2D data wave |
---|
463 | // WaveHandleModified(wavH); // Inform Igor that we have changed the wave. (CALLBACK! needed, but not allowed in Threading) |
---|
464 | |
---|
465 | return(0); |
---|
466 | } |
---|