1 | /* |
---|
2 | * MonteCarlo_Main.c |
---|
3 | * SANSMonteCarlo |
---|
4 | * |
---|
5 | * Created by Steve Kline on 7/1/10. |
---|
6 | * Copyright 2010 NIST. All rights reserved. |
---|
7 | * |
---|
8 | */ |
---|
9 | |
---|
10 | // Contains all of the XOP entry points |
---|
11 | // contains all of the RNG definitions |
---|
12 | // contains all of the utility functions required by Monte Carlo instances |
---|
13 | |
---|
14 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
15 | #include "MonteCarlo.h" |
---|
16 | #include "DebyeSpheres.h" |
---|
17 | |
---|
18 | |
---|
19 | // this function is here simply because MS visual studio does not contain lround() or round() in math.h |
---|
20 | // rounds away from zero |
---|
21 | // -- only used in FindPixel |
---|
22 | long MC_round(double x) |
---|
23 | { |
---|
24 | if(x == 0) { |
---|
25 | return (long)(0); |
---|
26 | } |
---|
27 | if(x > 0) { |
---|
28 | return (long)(x + 0.5f); |
---|
29 | } else { // x < 0 |
---|
30 | return (long)(x - 0.5f); |
---|
31 | } |
---|
32 | } |
---|
33 | |
---|
34 | |
---|
35 | int |
---|
36 | FindPixel(double testQ, double testPhi, double lam, double sdd, |
---|
37 | double pixSize, double xCtr, double yCtr, long *xPixel, long *yPixel) { |
---|
38 | |
---|
39 | double theta,dy,dx,qx,qy,pi; |
---|
40 | pi = 4.0*atan(1.0); |
---|
41 | //decompose to qx,qy |
---|
42 | qx = testQ*cos(testPhi); |
---|
43 | qy = testQ*sin(testPhi); |
---|
44 | |
---|
45 | //convert qx,qy to pixel locations relative to # of pixels x, y from center |
---|
46 | theta = 2.0*asin(qy*lam/4.0/pi); |
---|
47 | dy = sdd*tan(theta); |
---|
48 | // *yPixel = lround(yCtr + dy/pixSize); //corrected 7/2010 to round away from zero, to avoid 2x counts in row 0 and column 0 |
---|
49 | *yPixel = MC_round(yCtr + dy/pixSize); //corrected 7/2010 to round away from zero, to avoid 2x counts in row 0 and column 0 |
---|
50 | |
---|
51 | theta = 2.0*asin(qx*lam/4.0/pi); |
---|
52 | dx = sdd*tan(theta); |
---|
53 | // *xPixel = lround(xCtr + dx/pixSize); |
---|
54 | *xPixel = MC_round(xCtr + dx/pixSize); |
---|
55 | |
---|
56 | //if on detector, return xPix and yPix values, otherwise -1 |
---|
57 | if(*yPixel > 127 || *yPixel < 0) { |
---|
58 | *yPixel = -1; |
---|
59 | } |
---|
60 | if(*xPixel > 127 || *xPixel < 0) { |
---|
61 | *xPixel = -1; |
---|
62 | } |
---|
63 | |
---|
64 | return(0); |
---|
65 | } |
---|
66 | |
---|
67 | |
---|
68 | //calculates new direction (xyz) from an old direction |
---|
69 | //theta and phi don't change |
---|
70 | int |
---|
71 | NewDirection(double *vx, double *vy, double *vz, double theta, double phi) { |
---|
72 | |
---|
73 | int err=0; |
---|
74 | double vx0,vy0,vz0; |
---|
75 | double nx,ny,mag_xy,tx,ty,tz; |
---|
76 | |
---|
77 | //store old direction vector |
---|
78 | vx0 = *vx; |
---|
79 | vy0 = *vy; |
---|
80 | vz0 = *vz; |
---|
81 | |
---|
82 | mag_xy = sqrt(vx0*vx0 + vy0*vy0); |
---|
83 | if(mag_xy < 1e-12) { |
---|
84 | //old vector lies along beam direction |
---|
85 | nx = 0; |
---|
86 | ny = 1; |
---|
87 | tx = 1; |
---|
88 | ty = 0; |
---|
89 | tz = 0; |
---|
90 | } else { |
---|
91 | nx = -vy0 / mag_xy; |
---|
92 | ny = vx0 / mag_xy; |
---|
93 | tx = -vz0*vx0 / mag_xy; |
---|
94 | ty = -vz0*vy0 / mag_xy; |
---|
95 | tz = mag_xy ; |
---|
96 | } |
---|
97 | |
---|
98 | //new scattered direction vector |
---|
99 | *vx = cos(phi)*sin(theta)*tx + sin(phi)*sin(theta)*nx + cos(theta)*vx0; |
---|
100 | *vy = cos(phi)*sin(theta)*ty + sin(phi)*sin(theta)*ny + cos(theta)*vy0; |
---|
101 | *vz = cos(phi)*sin(theta)*tz + cos(theta)*vz0; |
---|
102 | |
---|
103 | return(err); |
---|
104 | } |
---|
105 | |
---|
106 | double |
---|
107 | path_len(double aval, double sig_tot) { |
---|
108 | |
---|
109 | double retval; |
---|
110 | |
---|
111 | retval = -1.0*log(1.0-aval)/sig_tot; |
---|
112 | |
---|
113 | return(retval); |
---|
114 | } |
---|
115 | |
---|
116 | |
---|
117 | #define IA 16807 |
---|
118 | #define IM 2147483647 |
---|
119 | #define AM (1.0/IM) |
---|
120 | #define IQ 127773 |
---|
121 | #define IR 2836 |
---|
122 | #define NTAB 32 |
---|
123 | #define NDIV (1+(IM-1)/NTAB) |
---|
124 | #define EPS 1.2e-7 |
---|
125 | #define RNMX (1.0-EPS) |
---|
126 | |
---|
127 | float ran1(long *idum) |
---|
128 | { |
---|
129 | int j; |
---|
130 | long k; |
---|
131 | static long iy=0; |
---|
132 | static long iv[NTAB]; |
---|
133 | float temp; |
---|
134 | |
---|
135 | if (*idum <= 0 || !iy) { |
---|
136 | if (-(*idum) < 1) *idum=1; |
---|
137 | else *idum = -(*idum); |
---|
138 | for (j=NTAB+7;j>=0;j--) { |
---|
139 | k=(*idum)/IQ; |
---|
140 | *idum=IA*(*idum-k*IQ)-IR*k; |
---|
141 | if (*idum < 0) *idum += IM; |
---|
142 | if (j < NTAB) iv[j] = *idum; |
---|
143 | } |
---|
144 | iy=iv[0]; |
---|
145 | } |
---|
146 | k=(*idum)/IQ; |
---|
147 | *idum=IA*(*idum-k*IQ)-IR*k; |
---|
148 | if (*idum < 0) *idum += IM; |
---|
149 | j=iy/NDIV; |
---|
150 | iy=iv[j]; |
---|
151 | iv[j] = *idum; |
---|
152 | if ((temp=AM*iy) > RNMX) return RNMX; |
---|
153 | else return temp; |
---|
154 | } |
---|
155 | #undef IA |
---|
156 | #undef IM |
---|
157 | #undef AM |
---|
158 | #undef IQ |
---|
159 | #undef IR |
---|
160 | #undef NTAB |
---|
161 | #undef NDIV |
---|
162 | #undef EPS |
---|
163 | #undef RNMX |
---|
164 | |
---|
165 | |
---|
166 | //////////a complete copy of ran1(), simply renamed ran1a() |
---|
167 | #define IA2 16807 |
---|
168 | #define IM2 2147483647 |
---|
169 | #define AM2 (1.0/IM2) |
---|
170 | #define IQ2 127773 |
---|
171 | #define IR2 2836 |
---|
172 | #define NTAB2 32 |
---|
173 | #define NDIV2 (1+(IM2-1)/NTAB2) |
---|
174 | #define EPS2 1.2e-7 |
---|
175 | #define RNMX2 (1.0-EPS2) |
---|
176 | |
---|
177 | float ran1a(long *idum) |
---|
178 | { |
---|
179 | int j; |
---|
180 | long k; |
---|
181 | static long iy=0; |
---|
182 | static long iv[NTAB2]; |
---|
183 | float temp; |
---|
184 | |
---|
185 | if (*idum <= 0 || !iy) { |
---|
186 | if (-(*idum) < 1) *idum=1; |
---|
187 | else *idum = -(*idum); |
---|
188 | for (j=NTAB2+7;j>=0;j--) { |
---|
189 | k=(*idum)/IQ2; |
---|
190 | *idum=IA2*(*idum-k*IQ2)-IR2*k; |
---|
191 | if (*idum < 0) *idum += IM2; |
---|
192 | if (j < NTAB2) iv[j] = *idum; |
---|
193 | } |
---|
194 | iy=iv[0]; |
---|
195 | } |
---|
196 | k=(*idum)/IQ2; |
---|
197 | *idum=IA2*(*idum-k*IQ2)-IR2*k; |
---|
198 | if (*idum < 0) *idum += IM2; |
---|
199 | j=iy/NDIV2; |
---|
200 | iy=iv[j]; |
---|
201 | iv[j] = *idum; |
---|
202 | if ((temp=AM2*iy) > RNMX2) return RNMX2; |
---|
203 | else return temp; |
---|
204 | } |
---|
205 | #undef IA2 |
---|
206 | #undef IM2 |
---|
207 | #undef AM2 |
---|
208 | #undef IQ2 |
---|
209 | #undef IR2 |
---|
210 | #undef NTAB2 |
---|
211 | #undef NDIV2 |
---|
212 | #undef EPS2 |
---|
213 | #undef RNMX2 |
---|
214 | /////////////// |
---|
215 | |
---|
216 | |
---|
217 | //////////////////////// |
---|
218 | #define MBIG 1000000000 |
---|
219 | #define MSEED 161803398 |
---|
220 | #define MZ 0 |
---|
221 | #define FAC (1.0/MBIG) |
---|
222 | |
---|
223 | float ran3(long *idum) |
---|
224 | { |
---|
225 | static int inext,inextp; |
---|
226 | static long ma[56]; |
---|
227 | static int iff=0; |
---|
228 | long mj,mk; |
---|
229 | int i,ii,k; |
---|
230 | |
---|
231 | if (*idum < 0 || iff == 0) { |
---|
232 | iff=1; |
---|
233 | mj=MSEED-(*idum < 0 ? -*idum : *idum); |
---|
234 | mj %= MBIG; |
---|
235 | ma[55]=mj; |
---|
236 | mk=1; |
---|
237 | for (i=1;i<=54;i++) { |
---|
238 | ii=(21*i) % 55; |
---|
239 | ma[ii]=mk; |
---|
240 | mk=mj-mk; |
---|
241 | if (mk < MZ) mk += MBIG; |
---|
242 | mj=ma[ii]; |
---|
243 | } |
---|
244 | for (k=1;k<=4;k++) |
---|
245 | for (i=1;i<=55;i++) { |
---|
246 | ma[i] -= ma[1+(i+30) % 55]; |
---|
247 | if (ma[i] < MZ) ma[i] += MBIG; |
---|
248 | } |
---|
249 | inext=0; |
---|
250 | inextp=31; |
---|
251 | *idum=1; |
---|
252 | } |
---|
253 | if (++inext == 56) inext=1; |
---|
254 | if (++inextp == 56) inextp=1; |
---|
255 | mj=ma[inext]-ma[inextp]; |
---|
256 | if (mj < MZ) mj += MBIG; |
---|
257 | ma[inext]=mj; |
---|
258 | return mj*FAC; |
---|
259 | } |
---|
260 | #undef MBIG |
---|
261 | #undef MSEED |
---|
262 | #undef MZ |
---|
263 | #undef FAC |
---|
264 | |
---|
265 | //////////////////////// a complete copy of ran3() renamed ran3a() |
---|
266 | #define MBIG2 1000000000 |
---|
267 | #define MSEED2 161803398 |
---|
268 | #define MZ2 0 |
---|
269 | #define FAC2 (1.0/MBIG2) |
---|
270 | |
---|
271 | float ran3a(long *idum) |
---|
272 | { |
---|
273 | static int inext,inextp; |
---|
274 | static long ma[56]; |
---|
275 | static int iff=0; |
---|
276 | long mj,mk; |
---|
277 | int i,ii,k; |
---|
278 | |
---|
279 | if (*idum < 0 || iff == 0) { |
---|
280 | iff=1; |
---|
281 | mj=MSEED2-(*idum < 0 ? -*idum : *idum); |
---|
282 | mj %= MBIG2; |
---|
283 | ma[55]=mj; |
---|
284 | mk=1; |
---|
285 | for (i=1;i<=54;i++) { |
---|
286 | ii=(21*i) % 55; |
---|
287 | ma[ii]=mk; |
---|
288 | mk=mj-mk; |
---|
289 | if (mk < MZ2) mk += MBIG2; |
---|
290 | mj=ma[ii]; |
---|
291 | } |
---|
292 | for (k=1;k<=4;k++) |
---|
293 | for (i=1;i<=55;i++) { |
---|
294 | ma[i] -= ma[1+(i+30) % 55]; |
---|
295 | if (ma[i] < MZ2) ma[i] += MBIG2; |
---|
296 | } |
---|
297 | inext=0; |
---|
298 | inextp=31; |
---|
299 | *idum=1; |
---|
300 | } |
---|
301 | if (++inext == 56) inext=1; |
---|
302 | if (++inextp == 56) inextp=1; |
---|
303 | mj=ma[inext]-ma[inextp]; |
---|
304 | if (mj < MZ2) mj += MBIG2; |
---|
305 | ma[inext]=mj; |
---|
306 | return mj*FAC2; |
---|
307 | } |
---|
308 | #undef MBIG2 |
---|
309 | #undef MSEED2 |
---|
310 | #undef MZ2 |
---|
311 | #undef FAC2 |
---|
312 | |
---|
313 | |
---|
314 | // returns the interpolated point value in xx[0,n-1] that has the value x |
---|
315 | double locate_interp(double xx[], long n, double x) |
---|
316 | { |
---|
317 | unsigned long ju,jm,jl,j; |
---|
318 | int ascnd; |
---|
319 | double pt; |
---|
320 | |
---|
321 | // char buf[256]; |
---|
322 | |
---|
323 | jl=0; |
---|
324 | ju=n-1; |
---|
325 | ascnd=(xx[n-1] > xx[0]); |
---|
326 | while (ju-jl > 1) { |
---|
327 | jm=(ju+jl) >> 1; |
---|
328 | if (x > xx[jm] == ascnd) |
---|
329 | jl=jm; |
---|
330 | else |
---|
331 | ju=jm; |
---|
332 | } |
---|
333 | j=jl; // the point I want is between xx[j] and xx[j+1] |
---|
334 | pt = (x- xx[j])/(xx[j+1] - xx[j]); //fractional distance, using linear interpolation |
---|
335 | |
---|
336 | // sprintf(buf, "x = %g, j= %ld, pt = %g\r",x,j,pt); |
---|
337 | // XOPNotice(buf); |
---|
338 | |
---|
339 | return(pt+(double)j); |
---|
340 | } |
---|
341 | |
---|
342 | |
---|
343 | |
---|
344 | |
---|
345 | ///////////////////////////// |
---|
346 | /* RegisterFunction() |
---|
347 | |
---|
348 | Igor calls this at startup time to find the address of the |
---|
349 | XFUNCs added by this XOP. See XOP manual regarding "Direct XFUNCs". |
---|
350 | */ |
---|
351 | static long |
---|
352 | RegisterFunction() |
---|
353 | { |
---|
354 | int funcIndex; |
---|
355 | |
---|
356 | funcIndex = GetXOPItem(0); // Which function is Igor asking about? |
---|
357 | switch (funcIndex) { |
---|
358 | case 0: // |
---|
359 | return((long)Monte_SANSX); |
---|
360 | break; |
---|
361 | case 1: // |
---|
362 | return((long)Monte_SANSX2); |
---|
363 | break; |
---|
364 | case 2: // |
---|
365 | return((long)DebyeSpheresX); |
---|
366 | break; |
---|
367 | case 3: // |
---|
368 | return((long)Monte_SANSX3); |
---|
369 | break; |
---|
370 | case 4: // |
---|
371 | return((long)Monte_SANSX4); |
---|
372 | break; |
---|
373 | } |
---|
374 | return(NIL); |
---|
375 | } |
---|
376 | |
---|
377 | /* XOPEntry() |
---|
378 | |
---|
379 | This is the entry point from the host application to the XOP for all messages after the |
---|
380 | INIT message. |
---|
381 | */ |
---|
382 | static void |
---|
383 | XOPEntry(void) |
---|
384 | { |
---|
385 | long result = 0; |
---|
386 | |
---|
387 | switch (GetXOPMessage()) { |
---|
388 | case FUNCADDRS: |
---|
389 | result = RegisterFunction(); |
---|
390 | break; |
---|
391 | } |
---|
392 | SetXOPResult(result); |
---|
393 | } |
---|
394 | |
---|
395 | /* main(ioRecHandle) |
---|
396 | |
---|
397 | This is the initial entry point at which the host application calls XOP. |
---|
398 | The message sent by the host must be INIT. |
---|
399 | main() does any necessary initialization and then sets the XOPEntry field of the |
---|
400 | ioRecHandle to the address to be called for future messages. |
---|
401 | */ |
---|
402 | HOST_IMPORT void |
---|
403 | main(IORecHandle ioRecHandle) |
---|
404 | { |
---|
405 | XOPInit(ioRecHandle); // Do standard XOP initialization. |
---|
406 | SetXOPEntry(XOPEntry); // Set entry point for future calls. |
---|
407 | |
---|
408 | if (igorVersion < 600) // Requires Igor Pro 6.00 or later. |
---|
409 | SetXOPResult(OLD_IGOR); // OLD_IGOR is defined in WaveAccess.h and there are corresponding error strings in WaveAccess.r and WaveAccessWinCustom.rc. |
---|
410 | else |
---|
411 | SetXOPResult(0L); |
---|
412 | } |
---|