1 | /* TwoPhaseFit.c |
---|
2 | |
---|
3 | */ |
---|
4 | |
---|
5 | |
---|
6 | #include "XOPStandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
7 | #include "SANSAnalysis.h" |
---|
8 | #include "libSANSAnalysis.h" |
---|
9 | #include "TwoPhase.h" |
---|
10 | |
---|
11 | // scattering from the Teubner-Strey model for microemulsions - hardly needs to be an XOP... |
---|
12 | int |
---|
13 | TeubnerStreyModelX(FitParamsPtr p) |
---|
14 | { |
---|
15 | double *dp; // Pointer to double precision wave data. |
---|
16 | float *fp; // Pointer to single precision wave data. |
---|
17 | double q; |
---|
18 | |
---|
19 | if (p->waveHandle == NIL) { |
---|
20 | SetNaN64(&p->result); |
---|
21 | return NON_EXISTENT_WAVE; |
---|
22 | } |
---|
23 | |
---|
24 | q = p->x; |
---|
25 | |
---|
26 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
27 | case NT_FP32: |
---|
28 | fp= WaveData(p->waveHandle); |
---|
29 | SetNaN64(&p->result); |
---|
30 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
31 | case NT_FP64: |
---|
32 | dp= WaveData(p->waveHandle); |
---|
33 | p->result = TeubnerStreyModel(dp,q); |
---|
34 | return 0; |
---|
35 | default: // We can't handle this wave data type. |
---|
36 | SetNaN64(&p->result); |
---|
37 | return REQUIRES_SP_OR_DP_WAVE; |
---|
38 | } |
---|
39 | |
---|
40 | return 0; |
---|
41 | } |
---|
42 | |
---|
43 | int |
---|
44 | Power_Law_ModelX(FitParamsPtr p) |
---|
45 | { |
---|
46 | double *dp; // Pointer to double precision wave data. |
---|
47 | float *fp; // Pointer to single precision wave data. |
---|
48 | double q; |
---|
49 | |
---|
50 | if (p->waveHandle == NIL) { |
---|
51 | SetNaN64(&p->result); |
---|
52 | return NON_EXISTENT_WAVE; |
---|
53 | } |
---|
54 | |
---|
55 | q= p->x; |
---|
56 | |
---|
57 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
58 | case NT_FP32: |
---|
59 | fp= WaveData(p->waveHandle); |
---|
60 | SetNaN64(&p->result); |
---|
61 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
62 | case NT_FP64: |
---|
63 | dp= WaveData(p->waveHandle); |
---|
64 | p->result = Power_Law_Model(dp,q); |
---|
65 | return 0; |
---|
66 | default: // We can't handle this wave data type. |
---|
67 | SetNaN64(&p->result); |
---|
68 | return REQUIRES_SP_OR_DP_WAVE; |
---|
69 | } |
---|
70 | |
---|
71 | return 0; |
---|
72 | } |
---|
73 | |
---|
74 | |
---|
75 | int |
---|
76 | Peak_Lorentz_ModelX(FitParamsPtr p) |
---|
77 | { |
---|
78 | double *dp; // Pointer to double precision wave data. |
---|
79 | float *fp; // Pointer to single precision wave data. |
---|
80 | double q; |
---|
81 | |
---|
82 | if (p->waveHandle == NIL) { |
---|
83 | SetNaN64(&p->result); |
---|
84 | return NON_EXISTENT_WAVE; |
---|
85 | } |
---|
86 | |
---|
87 | q= p->x; |
---|
88 | |
---|
89 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
90 | case NT_FP32: |
---|
91 | fp= WaveData(p->waveHandle); |
---|
92 | SetNaN64(&p->result); |
---|
93 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
94 | case NT_FP64: |
---|
95 | dp= WaveData(p->waveHandle); |
---|
96 | p->result = Peak_Lorentz_Model(dp,q); |
---|
97 | return 0; |
---|
98 | default: // We can't handle this wave data type. |
---|
99 | SetNaN64(&p->result); |
---|
100 | return REQUIRES_SP_OR_DP_WAVE; |
---|
101 | } |
---|
102 | |
---|
103 | return 0; |
---|
104 | } |
---|
105 | |
---|
106 | int |
---|
107 | Peak_Gauss_ModelX(FitParamsPtr p) |
---|
108 | { |
---|
109 | double *dp; // Pointer to double precision wave data. |
---|
110 | float *fp; // Pointer to single precision wave data. |
---|
111 | double q; |
---|
112 | |
---|
113 | if (p->waveHandle == NIL) { |
---|
114 | SetNaN64(&p->result); |
---|
115 | return NON_EXISTENT_WAVE; |
---|
116 | } |
---|
117 | |
---|
118 | q= p->x; |
---|
119 | |
---|
120 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
121 | case NT_FP32: |
---|
122 | fp= WaveData(p->waveHandle); |
---|
123 | SetNaN64(&p->result); |
---|
124 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
125 | case NT_FP64: |
---|
126 | dp= WaveData(p->waveHandle); |
---|
127 | p->result = Peak_Gauss_Model(dp,q); |
---|
128 | return 0; |
---|
129 | default: // We can't handle this wave data type. |
---|
130 | SetNaN64(&p->result); |
---|
131 | return REQUIRES_SP_OR_DP_WAVE; |
---|
132 | } |
---|
133 | |
---|
134 | return 0; |
---|
135 | } |
---|
136 | |
---|
137 | int |
---|
138 | Lorentz_ModelX(FitParamsPtr p) |
---|
139 | { |
---|
140 | double *dp; // Pointer to double precision wave data. |
---|
141 | float *fp; // Pointer to single precision wave data. |
---|
142 | double q; |
---|
143 | |
---|
144 | if (p->waveHandle == NIL) { |
---|
145 | SetNaN64(&p->result); |
---|
146 | return NON_EXISTENT_WAVE; |
---|
147 | } |
---|
148 | |
---|
149 | q= p->x; |
---|
150 | |
---|
151 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
152 | case NT_FP32: |
---|
153 | fp= WaveData(p->waveHandle); |
---|
154 | SetNaN64(&p->result); |
---|
155 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
156 | case NT_FP64: |
---|
157 | dp= WaveData(p->waveHandle); |
---|
158 | p->result=Lorentz_Model(dp,q); |
---|
159 | return 0; |
---|
160 | default: // We can't handle this wave data type. |
---|
161 | SetNaN64(&p->result); |
---|
162 | return REQUIRES_SP_OR_DP_WAVE; |
---|
163 | } |
---|
164 | |
---|
165 | return 0; |
---|
166 | } |
---|
167 | |
---|
168 | int |
---|
169 | FractalX(FitParamsPtr p) |
---|
170 | { |
---|
171 | double *dp; // Pointer to double precision wave data. |
---|
172 | float *fp; // Pointer to single precision wave data. |
---|
173 | double q; |
---|
174 | |
---|
175 | if (p->waveHandle == NIL) { |
---|
176 | SetNaN64(&p->result); |
---|
177 | return NON_EXISTENT_WAVE; |
---|
178 | } |
---|
179 | |
---|
180 | q= p->x; |
---|
181 | |
---|
182 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
183 | case NT_FP32: |
---|
184 | fp= WaveData(p->waveHandle); |
---|
185 | SetNaN64(&p->result); |
---|
186 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
187 | case NT_FP64: |
---|
188 | dp= WaveData(p->waveHandle); |
---|
189 | p->result = Fractal(dp,q); |
---|
190 | return 0; |
---|
191 | default: // We can't handle this wave data type. |
---|
192 | SetNaN64(&p->result); |
---|
193 | return REQUIRES_SP_OR_DP_WAVE; |
---|
194 | } |
---|
195 | |
---|
196 | return 0; |
---|
197 | } |
---|
198 | |
---|
199 | int |
---|
200 | DAB_ModelX(FitParamsPtr p) |
---|
201 | { |
---|
202 | double *dp; // Pointer to double precision wave data. |
---|
203 | float *fp; // Pointer to single precision wave data. |
---|
204 | double q; |
---|
205 | |
---|
206 | if (p->waveHandle == NIL) { |
---|
207 | SetNaN64(&p->result); |
---|
208 | return NON_EXISTENT_WAVE; |
---|
209 | } |
---|
210 | |
---|
211 | q= p->x; |
---|
212 | |
---|
213 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
214 | case NT_FP32: |
---|
215 | fp= WaveData(p->waveHandle); |
---|
216 | SetNaN64(&p->result); |
---|
217 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
218 | case NT_FP64: |
---|
219 | dp= WaveData(p->waveHandle); |
---|
220 | p->result = DAB_Model(dp,q); |
---|
221 | return 0; |
---|
222 | default: // We can't handle this wave data type. |
---|
223 | SetNaN64(&p->result); |
---|
224 | return REQUIRES_SP_OR_DP_WAVE; |
---|
225 | } |
---|
226 | |
---|
227 | return 0; |
---|
228 | } |
---|
229 | |
---|
230 | // G. Beaucage's Unified Model (1-4 levels) |
---|
231 | // |
---|
232 | int |
---|
233 | OneLevelX(FitParamsPtr p) |
---|
234 | { |
---|
235 | double *dp; // Pointer to double precision wave data. |
---|
236 | float *fp; // Pointer to single precision wave data. |
---|
237 | double q; |
---|
238 | |
---|
239 | if (p->waveHandle == NIL) { |
---|
240 | SetNaN64(&p->result); |
---|
241 | return NON_EXISTENT_WAVE; |
---|
242 | } |
---|
243 | |
---|
244 | q= p->x; |
---|
245 | |
---|
246 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
247 | case NT_FP32: |
---|
248 | fp= WaveData(p->waveHandle); |
---|
249 | SetNaN64(&p->result); |
---|
250 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
251 | case NT_FP64: |
---|
252 | dp= WaveData(p->waveHandle); |
---|
253 | p-> result = OneLevel(dp,q); |
---|
254 | return 0; |
---|
255 | default: // We can't handle this wave data type. |
---|
256 | SetNaN64(&p->result); |
---|
257 | return REQUIRES_SP_OR_DP_WAVE; |
---|
258 | } |
---|
259 | |
---|
260 | return 0; |
---|
261 | } |
---|
262 | |
---|
263 | // G. Beaucage's Unified Model (1-4 levels) |
---|
264 | // |
---|
265 | int |
---|
266 | TwoLevelX(FitParamsPtr p) |
---|
267 | { |
---|
268 | double *dp; // Pointer to double precision wave data. |
---|
269 | float *fp; // Pointer to single precision wave data. |
---|
270 | double q; |
---|
271 | |
---|
272 | if (p->waveHandle == NIL) { |
---|
273 | SetNaN64(&p->result); |
---|
274 | return NON_EXISTENT_WAVE; |
---|
275 | } |
---|
276 | |
---|
277 | q= p->x; |
---|
278 | |
---|
279 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
280 | case NT_FP32: |
---|
281 | fp= WaveData(p->waveHandle); |
---|
282 | SetNaN64(&p->result); |
---|
283 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
284 | case NT_FP64: |
---|
285 | dp= WaveData(p->waveHandle); |
---|
286 | p->result = TwoLevel(dp, q); |
---|
287 | return 0; |
---|
288 | default: // We can't handle this wave data type. |
---|
289 | SetNaN64(&p->result); |
---|
290 | return REQUIRES_SP_OR_DP_WAVE; |
---|
291 | } |
---|
292 | |
---|
293 | return 0; |
---|
294 | } |
---|
295 | |
---|
296 | // G. Beaucage's Unified Model (1-4 levels) |
---|
297 | // |
---|
298 | int |
---|
299 | ThreeLevelX(FitParamsPtr p) |
---|
300 | { |
---|
301 | double *dp; // Pointer to double precision wave data. |
---|
302 | float *fp; // Pointer to single precision wave data. |
---|
303 | double q; |
---|
304 | |
---|
305 | if (p->waveHandle == NIL) { |
---|
306 | SetNaN64(&p->result); |
---|
307 | return NON_EXISTENT_WAVE; |
---|
308 | } |
---|
309 | |
---|
310 | q= p->x; |
---|
311 | |
---|
312 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
313 | case NT_FP32: |
---|
314 | fp= WaveData(p->waveHandle); |
---|
315 | SetNaN64(&p->result); |
---|
316 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
317 | case NT_FP64: |
---|
318 | dp= WaveData(p->waveHandle); |
---|
319 | p->result = ThreeLevel(dp, q); |
---|
320 | return 0; |
---|
321 | default: // We can't handle this wave data type. |
---|
322 | SetNaN64(&p->result); |
---|
323 | return REQUIRES_SP_OR_DP_WAVE; |
---|
324 | } |
---|
325 | |
---|
326 | return 0; |
---|
327 | } |
---|
328 | |
---|
329 | // G. Beaucage's Unified Model (1-4 levels) |
---|
330 | // |
---|
331 | int |
---|
332 | FourLevelX(FitParamsPtr p) |
---|
333 | { |
---|
334 | double *dp; // Pointer to double precision wave data. |
---|
335 | float *fp; // Pointer to single precision wave data. |
---|
336 | double q; |
---|
337 | |
---|
338 | if (p->waveHandle == NIL) { |
---|
339 | SetNaN64(&p->result); |
---|
340 | return NON_EXISTENT_WAVE; |
---|
341 | } |
---|
342 | |
---|
343 | q= p->x; |
---|
344 | |
---|
345 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
346 | case NT_FP32: |
---|
347 | fp= WaveData(p->waveHandle); |
---|
348 | SetNaN64(&p->result); |
---|
349 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
350 | case NT_FP64: |
---|
351 | dp= WaveData(p->waveHandle); |
---|
352 | p->result = FourLevel(dp,q); |
---|
353 | return 0; |
---|
354 | default: // We can't handle this wave data type. |
---|
355 | SetNaN64(&p->result); |
---|
356 | return REQUIRES_SP_OR_DP_WAVE; |
---|
357 | } |
---|
358 | |
---|
359 | return 0; |
---|
360 | } |
---|
361 | |
---|
362 | int |
---|
363 | BroadPeakX(FitParamsPtr p) |
---|
364 | { |
---|
365 | double *dp; // Pointer to double precision wave data. |
---|
366 | float *fp; // Pointer to single precision wave data. |
---|
367 | double q; |
---|
368 | |
---|
369 | if (p->waveHandle == NIL) { |
---|
370 | SetNaN64(&p->result); |
---|
371 | return NON_EXISTENT_WAVE; |
---|
372 | } |
---|
373 | |
---|
374 | q= p->x; |
---|
375 | |
---|
376 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
377 | case NT_FP32: |
---|
378 | fp= WaveData(p->waveHandle); |
---|
379 | SetNaN64(&p->result); |
---|
380 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
381 | case NT_FP64: |
---|
382 | dp= WaveData(p->waveHandle); |
---|
383 | p->result = BroadPeak(dp,q); |
---|
384 | return 0; |
---|
385 | default: // We can't handle this wave data type. |
---|
386 | SetNaN64(&p->result); |
---|
387 | return REQUIRES_SP_OR_DP_WAVE; |
---|
388 | } |
---|
389 | |
---|
390 | return 0; |
---|
391 | } |
---|
392 | |
---|
393 | int |
---|
394 | CorrLengthX(FitParamsPtr p) |
---|
395 | { |
---|
396 | double *dp; // Pointer to double precision wave data. |
---|
397 | float *fp; // Pointer to single precision wave data. |
---|
398 | double q; |
---|
399 | |
---|
400 | if (p->waveHandle == NIL) { |
---|
401 | SetNaN64(&p->result); |
---|
402 | return NON_EXISTENT_WAVE; |
---|
403 | } |
---|
404 | |
---|
405 | q= p->x; |
---|
406 | |
---|
407 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
408 | case NT_FP32: |
---|
409 | fp= WaveData(p->waveHandle); |
---|
410 | SetNaN64(&p->result); |
---|
411 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
412 | case NT_FP64: |
---|
413 | dp= WaveData(p->waveHandle); |
---|
414 | p->result = CorrLength(dp,q); |
---|
415 | return 0; |
---|
416 | default: // We can't handle this wave data type. |
---|
417 | SetNaN64(&p->result); |
---|
418 | return REQUIRES_SP_OR_DP_WAVE; |
---|
419 | } |
---|
420 | |
---|
421 | return 0; |
---|
422 | } |
---|
423 | |
---|
424 | int |
---|
425 | TwoLorentzianX(FitParamsPtr p) |
---|
426 | { |
---|
427 | double *dp; // Pointer to double precision wave data. |
---|
428 | float *fp; // Pointer to single precision wave data. |
---|
429 | double q; |
---|
430 | |
---|
431 | if (p->waveHandle == NIL) { |
---|
432 | SetNaN64(&p->result); |
---|
433 | return NON_EXISTENT_WAVE; |
---|
434 | } |
---|
435 | |
---|
436 | q= p->x; |
---|
437 | |
---|
438 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
439 | case NT_FP32: |
---|
440 | fp= WaveData(p->waveHandle); |
---|
441 | SetNaN64(&p->result); |
---|
442 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
443 | case NT_FP64: |
---|
444 | dp= WaveData(p->waveHandle); |
---|
445 | p->result = TwoLorentzian(dp,q); |
---|
446 | return 0; |
---|
447 | default: // We can't handle this wave data type. |
---|
448 | SetNaN64(&p->result); |
---|
449 | return REQUIRES_SP_OR_DP_WAVE; |
---|
450 | } |
---|
451 | |
---|
452 | return 0; |
---|
453 | } |
---|
454 | |
---|
455 | int |
---|
456 | TwoPowerLawX(FitParamsPtr p) |
---|
457 | { |
---|
458 | double *dp; // Pointer to double precision wave data. |
---|
459 | float *fp; // Pointer to single precision wave data. |
---|
460 | double q; |
---|
461 | |
---|
462 | if (p->waveHandle == NIL) { |
---|
463 | SetNaN64(&p->result); |
---|
464 | return NON_EXISTENT_WAVE; |
---|
465 | } |
---|
466 | |
---|
467 | q= p->x; |
---|
468 | |
---|
469 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
470 | case NT_FP32: |
---|
471 | fp= WaveData(p->waveHandle); |
---|
472 | SetNaN64(&p->result); |
---|
473 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
474 | case NT_FP64: |
---|
475 | dp= WaveData(p->waveHandle); |
---|
476 | p->result = TwoPowerLaw(dp,q); |
---|
477 | return 0; |
---|
478 | default: // We can't handle this wave data type. |
---|
479 | SetNaN64(&p->result); |
---|
480 | return REQUIRES_SP_OR_DP_WAVE; |
---|
481 | } |
---|
482 | |
---|
483 | return 0; |
---|
484 | } |
---|
485 | |
---|
486 | int |
---|
487 | PolyGaussCoilX(FitParamsPtr p) |
---|
488 | { |
---|
489 | double *dp; // Pointer to double precision wave data. |
---|
490 | float *fp; // Pointer to single precision wave data. |
---|
491 | double q; |
---|
492 | |
---|
493 | if (p->waveHandle == NIL) { |
---|
494 | SetNaN64(&p->result); |
---|
495 | return NON_EXISTENT_WAVE; |
---|
496 | } |
---|
497 | |
---|
498 | q= p->x; |
---|
499 | |
---|
500 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
501 | case NT_FP32: |
---|
502 | fp= WaveData(p->waveHandle); |
---|
503 | SetNaN64(&p->result); |
---|
504 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
505 | case NT_FP64: |
---|
506 | dp= WaveData(p->waveHandle); |
---|
507 | p->result = PolyGaussCoil(dp,q); |
---|
508 | return 0; |
---|
509 | default: // We can't handle this wave data type. |
---|
510 | SetNaN64(&p->result); |
---|
511 | return REQUIRES_SP_OR_DP_WAVE; |
---|
512 | } |
---|
513 | |
---|
514 | return 0; |
---|
515 | } |
---|
516 | |
---|
517 | int |
---|
518 | GaussLorentzGelX(FitParamsPtr p) |
---|
519 | { |
---|
520 | double *dp; // Pointer to double precision wave data. |
---|
521 | float *fp; // Pointer to single precision wave data. |
---|
522 | double q; |
---|
523 | |
---|
524 | if (p->waveHandle == NIL) { |
---|
525 | SetNaN64(&p->result); |
---|
526 | return NON_EXISTENT_WAVE; |
---|
527 | } |
---|
528 | |
---|
529 | q= p->x; |
---|
530 | |
---|
531 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
532 | case NT_FP32: |
---|
533 | fp= WaveData(p->waveHandle); |
---|
534 | SetNaN64(&p->result); |
---|
535 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
536 | case NT_FP64: |
---|
537 | dp= WaveData(p->waveHandle); |
---|
538 | p->result = GaussLorentzGel(dp,q); |
---|
539 | return 0; |
---|
540 | default: // We can't handle this wave data type. |
---|
541 | SetNaN64(&p->result); |
---|
542 | return REQUIRES_SP_OR_DP_WAVE; |
---|
543 | } |
---|
544 | |
---|
545 | return 0; |
---|
546 | } |
---|
547 | |
---|
548 | int |
---|
549 | GaussianShellX(FitParamsPtr p) |
---|
550 | { |
---|
551 | double *dp; // Pointer to double precision wave data. |
---|
552 | float *fp; // Pointer to single precision wave data. |
---|
553 | double q; |
---|
554 | |
---|
555 | if (p->waveHandle == NIL) { |
---|
556 | SetNaN64(&p->result); |
---|
557 | return NON_EXISTENT_WAVE; |
---|
558 | } |
---|
559 | |
---|
560 | q= p->x; |
---|
561 | |
---|
562 | switch(WaveType(p->waveHandle)){ // We can handle single and double precision coefficient waves. |
---|
563 | case NT_FP32: |
---|
564 | fp= WaveData(p->waveHandle); |
---|
565 | SetNaN64(&p->result); |
---|
566 | return REQUIRES_SP_OR_DP_WAVE; //not quite true, but good enough for now AJJ 4/23/07 |
---|
567 | case NT_FP64: |
---|
568 | dp= WaveData(p->waveHandle); |
---|
569 | p->result = GaussianShell(dp,q); |
---|
570 | return 0; |
---|
571 | default: // We can't handle this wave data type. |
---|
572 | SetNaN64(&p->result); |
---|
573 | return REQUIRES_SP_OR_DP_WAVE; |
---|
574 | } |
---|
575 | |
---|
576 | return 0; |
---|
577 | } |
---|
578 | |
---|
579 | ///////////end of XOP |
---|
580 | |
---|
581 | |
---|